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1. INTRODUCTION

The present study is concerned with the construction of Hotine's (w, ¢.N)
coordinate system as used in the three-dimensional flat space. and, especially,
with the question as to whether this construction may or may not be gencralized
to a three-dimensional curved Riemannian space. In [Hotine, 1969], henceforth
abbreviated as [H], the (w,¢,N) coordinate system is built on the notion of
N-surfaces, each defined by a certain constant value of the coordinate N, which
can be identified with equipotential surfaces of the earth's gravity field.
Statements found in §1-19, §15-2, and §17-33 of [H] imply that N is a scalar
invariant (independent of the choice of a coordinate system), that it is a
single-valued, continuous, and differentiable function of position throughout a
region of space considered, and that within this region, adjacent normals to any
given N-surface do not intersect. When, in the following, we use the attribute

"well-behaved" for the scalar N, these are the qualities we will have in mind.

As is explained in §12-1 through §12-10 of {H]. the other two space
coordirates in Hotine's system are the independent scalars o (longitude) and ¢
(latitude), which are functions of the normal to a given N-surface at a given
point. A well-behaved scalar N in a region considered implies that there are no
singular points in the (w,¢.N) coordinate system, i.e., that there are no
distinct points having identical coordinates Such a well-behaved scalar N is
sometimes interpreted as giving rise to non-intersecting. convex surfaces in

that region.

With regard to all points on the earth's surface, some investigators
suggest the adoption of a coordinate system (w,¢, |grad N]), the usefulness of
which they justify by the existence of singular points in the (w,¢.N) system.
However, since we are not concerned with the extent of regions where the system
(w.¢,N) is suitable. we do not address this proposition. The derivations in the
present studv, focusing on the theoretical question with regard to a potential
admissibility of the system (w,¢.N) for a curved space, pertain to an
infinitesimal neighborhood of a given point P. In this neighborhood, N is
assumed to be well-behaved. If the feasibility of the (w,¢.N) system in this
neighborhood under the stipulation of a curved space is established, a following

step would be to validate the system for finite regions. If the system is not




feasible in this neighborhood, the outcome of the analysis is declared negative

and the investigation terminates.

The feasibility study of the extension of the (w, $,N) coordinate system to
a curved space is facilitated by the fact that the scalar N can be accepted as
the third space coordinate whether the space is flat or curved. This stems from

the tensor equation

N =N .
rs sr

valid. under the usual assumptions about N, at any point of a region of space
considered (here it is needed only within an infinitesimal neighborhood of P).
The above equality stems from the first and second covariant derivatives of a
scalar (and the first covariant derivatives of a vector) being unaffected by the
curvature of the space. Since this type of formula will be the basis for
acceptability of a given quantity as a coordinate, the scalar N (which has
already qualified) will not be subject to further scrutiny. On the other hand.
the question arices as to whether o and ¢ could under certain circumstances be
admissible as the other two space coordinates in a curved space, similar in this
respect to N, or whether they are admissible as such coordinates strictly in the
flat space. This question will be answered as a by-product of the analysis
concerned with the generalization of @ and ¢ to G and H, which are called

respectively the generalized longitude and latitude.

The approach we choose is admittedly unusual. In practice, one usually
designs suitable coordinates in a two-, three-, or higher-dimensional space
whose characteristics are known. However, here we postulate that the quantities
G and H are admissible as coordinates, and examine what this postulate entails
for a three-dimensional space in terms of the covariant Riemann-Christoffel
tensor and its spatial derivatives. Subsequently, we specialize G and H to o
and ¢. and examine whether the covariant Riemann-Christoffel tensor and all of
its spatial derivatives are required to be zero. In the affirmative, we
conclude that o and ¢ can exist as coordinates only in the flat space. This, in
fact, would represent the negative outcome of the feasibility study of extending

the (o, ¢,N) coordinate system to a curved space.

As we have indicated, in Chapter 12 Hotine [1969] constructs his (o,¢.N)

coordinate system for use in the flat c<nars.  However, he considers certain

equations related to the construction of his coordinate system as being valid




only in the flat space, whereas it will be shown later in this Introduction that
such equations could be valid in a curved space as well. This, ip fact, has led
above to the challenging question as to whether the coordinates @ and ¢ could,
by chance, be admissible in some class of curved spaces, and hence to the task
referred to as “"feasibility study”. Another challenging task is to approach the
problem via generalized latitude and longitude., task that may be of interest in

its own right.

Although a lower-dimensional analysis is not likely to provide reliable
guidance for the present feasibility study, such analysis was undertaken for the
sake of interest. The role of the flat space was taken by a plane. the role of
an N-surface was taken by an N-curve, and the role of the coordinates o and ¢
was taken by the coordinate ¢. In analogy to Hotine's system, the coordinate ¥
is the angle between a "base" vector C considered at a given point P on the N-
curve, and the outward-drawn normal to this curve at P. (Since N is assumed to
be well-behaved, there are no singular points in the §,N coordinates.) Upon
using a lower-dimensional analogue of the analysis carried out in the subsequent
chapters, the condition for ¢ being admissible as a coordinate in the
neighborhood of P turns out to be Raﬁraﬂa162715=0. where RaBTG is the
covariant Riemann-Christoffel tensor in two dimensions, £ is the unit tangent to
the N-curve, and j is the normal to the N-curve, ail associated with P. By
virtue of §5-20 in [H], this condition translates into K=0, where K is the
Gaussian curvature. However, K=0 allows for developable surfaces (e.g., a
cylinger). Although such surfaces are not flat and cannot be expressed by
Cartesian coordinates, they do not exclude §y as a coordinate. 1nus, a i1uwer-
dimensional analysis has not eliminated the possibility that a class of curved
spaces might exist, where ¢ and ¢ would be acceptable as coordinates (N being

acceptable by definition).

We remark that the approach chosen for the present study rellies heavily on
the covariant Riemann-Christoffel tensor. In §5-5 of [H]. this fourth-order
tensor is called the "covariant form" of the Riemann-Christoffel tensor: the
latter is presented in §5-3 [ibid]. For the sake of brevity, the Riemann-
Christoffel tensor will be called here the R-tensor. and the covariant Riemann-
Christoffel tensor will be called the covariant R-tensor. We lllustrate the

importance and usefulness of these tensors in Section A.2 of Appendix A.




Throughout the analysis, Hotine's notation for these and other tensors, indices,

etc., will be adhered to.

In order to explain, along general lines, the link between the coordinates
@ and ¢ of the (w,¢,N) system on one hand and the covariant R-tensor on the
other, we recall that according to Chapter 12 of {H]., v and ¢ are determined
with the aid of the orthonormal "base" vectors A, B, and C. If o and ¢ are to
be coordinates not only at a given point, denoted P, but at neighboring points
as well, a question arises with regard to the parallel transport, or possibly
some other kind of transport. of A, B, and C from the point P. In [H] the base
vectors emanate from the known point called "origin”, but by virtue of the
parallel transport in the flat space, they could equally well emanate from P or
any other point. Since here we work with the neightorhood of P, it is expedient
to consider the base vectors as emanating from P. The question of transporting
A, B, and C is related to the quality of the space in the neighborhood of P
{along the N-surface at P as well as along neighboring N-surfaces), which. in
turn. is related to the covariant R-tensor in the neighborhood of P, or,
equivalently, to the covariant R-tensor and its spatial derivatives at P. If
the space is flat, this tensor is zero at all points of the space, or.

equivalently, this tensor and all of its spatial derivatives are zerc at P.

The st~tement of equivalence between the covariant R-tensor being zero at
different points in the space, and this tensor and all its spatial derivatives
being zero at P, is rooted in the consideration that this and other tensors can
be expgiessed at various locations via the Taylor-series expansion from P. Such
an expansion has an important role to play in the present study, and is treated
in suffic’ent detail in Appendix A. Since an expression for tensor components
at P' based on tensor components at P pertains to distinct poinis by definition,
the equality sign in the Taylor series does not indicate a tensor equation., but
merely a collection of equalities for individual components. However, that such

a collection of equalities does not represent a tensor equation does not detract

from its usefulness.

We illustrate the above discussion with a simple example in a two-
dimension~l flat space. i.e., a plane. The coordinates in this plane are chosen
to be r (distance from the origin) and 6 (angle from a given axis): thus, the
coordinate system i{s represented by (ua)a(r.a). The metric in these

2

coordinates is d82=dP +r2d62. implying the metric tensor in matrix notation:




1 0
(a_ o] = .
af 0 r2
which is assumed to be valid at the point P. Since for the point P' we have

r'2=(r+Ar)2. where Ar=r'-r., it follows that

1 0 0 0 0 4]
(a!.] = + +
B 0o r? 0 2rar 0o ar?
But this is precisely the equality one obtains when proceeding via the Taylor
series as outlined in Section A.1 of Appendix A, except that here the coordinate
system {s not locally Cartesian at P (i.e., [aaB]#identity matrix). This

equality is derived in detail in Appendix B.

We now return to the coordinates w and ¢ of the (w.¢.N) system. and show
that certain relations used in [H] do not apply strictly in the flat space,
which leaves open the question of additional possibilities. We start with the
argument that if one were working in a general Riemannian space, one could still
use Hotine's orthonormal base vectors A, B, and C, and consider them in a
locally Cartesian coordinate system at P. This would be sufficient to produce

the three tensor equations implicit in the development of Chapter 12 in [H]:

A = B = C =0, (1)
rs rs rs

where Ars is obtained by the covariant differentiation of Ar' etc.. and where
the covariant components of A, B, and C in the above-mentioned local system are
Ar=(1'0'0)' Br=(0.].0). and Cr=(0.0.]). Since the tensor equations represented
by (1) stem from the definition of a locally Cartesian system, which is
admissible in the flat space as well as in curved spaces. they. alone., are
inconsequential with regard to the flatness of the space. Accordingly, their
use in the derivations leading to Hotine's equations (12.046,047) for o and ¢r

does not restrict these results to the flat space.

It is thus apparent that the same formulas giving R and ¢r would have been
obtained even if the space were known to be curved. An identical statement can
be made also with regard to equations (12.014-016) in [H] giving lrs. Hpg and
Vg where A, u, and v form an orthonormal triad. with 2 and u being tangent to
the N-surface and v being an outward-pointing normal. (These and all the other

tensor equations in this study are considered at P, where they are valid in any
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coordinates.) Since much of the development in §12-88 through §12-94 1is based
on the over-restrictive assumption that the formulas for xrs. Mg and Vs apply
only in the flat space, C(hapter 12 of [H] is incapable of formulating sufficient
conditions for N-surfaces to be embedded in the flat space. We will return to
considering w and ¢ in the flat space in conjunction with the integrability
conditions, and first present a short discussion pertaining to the flat-space

characteristics in terms of Hotine's vectors A, B, and C.

The above space ambiguity is linked to the limitations of (1), which merely
states that the system associated with A, B, and C is Cartesian to a first
order. i.e., Cartesian at P and in its immedizte neighborhood. and bears no
relationship to the curvature of the space. (As is indicated in §5-8 cf [H] and
described in Section A.1 of Appendix A, if, in the Taylor-series expansion of
the metric tensor from P, the term linear in coordinate differences is missing,
the coordinate system is called Cartesian to a first order, if also the
quadratic term is missing, the coordinate system is called Cartesian to a second
order: etc.) The flatness of the entire space is expressed through further

tenser equations in addition to (1), obtained by covariant differentiation as
A = B = C =0 , {2)

Arstu B Brstu - Crstu =0 (3)

etc. Section A.3 of Appendix A shows that equation (2) is equivalent to

krst - krts ) (4)

where k is a general vector in space. The derivation of the Mainardi-Codazzi
equations in (6.21) and later in (8.23) of {H] makes use of the above formula
(4) specialized for v. But even if (4) were not specialized, the local system
could be considered Cartesian only to a second order if (3). etc., did not hold

true. The use of such a Cartesian system would be confined to a relatively

small neighborhood of P.

An arbitrary differentiable scalar function of position, denoted F, is
admissible as a coordinate in a given space if it fulfills three integrability
conditions that Zund [1990] calls "commutators". The commutators of F in a
general space can be derived upon using the symmetry of Frs in r and s. and are,.
indeed, equivalent to the condition Frs=Fsr' In Chapter 12, Hotine attempted to

formulate six flat-space integrability conditions for his system, where the




scalar functions of position o and ¢ were intended as the first two coordinates.
He considered two of these conditions to be the Mainardi-Codazzi equations. He
formulated three further conditions, namely (12.138-140), and aggregated them
into the surface tensor equation (12.144). 1In §12-92, he concluded that the

sixth condition is represented by the symmetry of Nrs'

However, the three conditions just mentioned were derived upon assuming
that the formulas for er. Hiogt and Vg are valid strictly in the flat space,
whereas we have seen that they involve only (1) but not (2), (3), etc., and
could thus be valid in other spaces as well. This finding is consistent with
the fact that the curvature of the space does not affect the first covariant
derivatives of vectors, here Ars' Heg: and Vg A similar negative comment can
be made about the sixth condition, which does not involve any of (1), (2), (3),.
etc. In particular. since the ordinary second-order partial derivatives commute
and the Christoffel symbols are symmetric in the lower indices regardless of the
kind of the space and of the kind of coordinates in use., it follows for any

space where N is a scalar invariant (assumed well-behaved as usual) that

Nrs - Nsr ) (5)

which has been encountered earlier. Clearly, the flat space has no special
distinction in this regard. Finally, the remaining two conditions represented
by the Mainardi-Codazzi equations are weaker than (4), or, equivalently, weaker

than (2), which, in any event, allows for spaces other than the flat space.

The main outcome of the introductory discussion can be summarized as
follows. Chapter 12 of [H] is inconclusive as to the conditions under which the
coordinates v and ¢ of the (w,¢.N) system are restricted to the flat space.
Thus, a theoretical possibility of w and ¢ being admissible as the first two
coordinates in a general (curved) space will be investigated. The vehicle in
carrying out this task will be the generalized longitude and latitude, G and H.
The theoretical possibllity just mentioned will be precluded if it is proved
that the covariant R-tensor must be identically zero in a space where w and ¢
are stipulated to be coordinates. Such a proof., or a counter-proof, is a major

goal of the present study.




2. OUTLINE OF A "REVERSED" APPROACH

2.1 Role of the Covariant Riemann-Christoffel Tensor

In order to assess the admissibility of o and ¢ as coordinates in the flat
space and to answer the questions raised in the Introduction, we undertake a
"reversed” approach, in which the space will be required to accommodate two
functions such as @ and ¢ postulated to be coordinates. The third coordinate
will always be N, a continuous differentiable scalar function of position, which
is defined to be an invariant in any space. Accordingly, (5) holds true by
definition. The designation "any space" or "general space" pertains here to a
Riemannian space with general curvature properties, i.e., the flat space or
curved spaces (in three dimensions). The two quantities postulated as
coordinates in some spaces are denoted G and H, and are called "parameters".
They are considered to be quite general differentiable functions satisfying the

commutators, or, equivalently, the conditions

G_=6_ ., H o =H_ (6a.b)
rs Sr rs sSr

in a class of spaces. In such spaces they will be proper scalar invariants and
will be admissible as coordinates. We postulate that (6a,b) hold true and

proceed to find out all we can about such a class of spaces.

The specialization of G and H for Hotine's coordinates @ and ¢ will take
place in the final stage of the analysis. For the most part, either of the

commutators in (6a,b) is represented by

Frs - Fsr ! (7)

where F is an almost arbitrary differentiable scalar function of position. 1In
the next chapter, the commutators will be derived from this symmetry condition,
which also supplies AF, the Laplacian of F, with little additional effort. The
main thrust of the present approach is the stipulation that the commutators
embody conditions on the space, in particular, on the covariant Riemann-
Christoffel tensor (covariant R-tensor), rather than on the parameters G and H.
This tensor can be used to express the space in which G and H are admissible as
coordinates via the metric tensor constructed from the point P outwards. Such a
procedure begins upon stioulating a locally Cartesian coordinate system at P,

denoted (xr}. r=1,2,3. By construction, the system (xr) is Cartesian to a first




order, but it could also be Cartesian to a second, a third, etc., orders, or it

could be globally Cartesian, i.e., Cartesian to all orders.

The properties of (xr} are reflected by the metric tensor expressed at
arbitrary points. This tensor can be found from the Taylor-series expansion of
€rg’ the metric tensor at P, the matrix form of which at P is [grs]=1' The
expansion proceeds in terms of the Christoffel symbols (C-symbols) and their
partial derivatives with respect to the coordinates (xr). The C-symbols are
zero at P due to the definition of the system {xr}. Accordingly, the linear
term in the expansion of the metric tensor is missing, which is precisely what
makes the system "Cartesian to a first order”. The quadratic term contains the
first-order partial derivatives of the C-symbols, the cubic term contains their
second-order partial derivatives, the next terms contains their third-order
partial derivatives together with their first-order partial derivatives, and so
on. If all orders of partial derivatives of the C-symbols are zero, the systenm
is globally Cartesian and vice versa. These derivatives can be determined from
the components of the covariant R-tensor and their partial derivatives, but are
not unique. In the absence of conflicting information we set them to zero as a
part of the strategy in constructing the system (xr}. This strategy has the
advantage of seizing every opportunity to make the system (xr} globally

Cartesian. If this actually occurs, one concludes that the space must be flat.

In general, the C-symbols are linked to the covariant R-tensor via the
Riemann-Christoffel tensor (R-tensor). In §5-6 of {H], the R-tensor is related
to the first-order partial derivatives of the C-symbols in a locally Cartesian
coordinate system that has been identified here by {xr}, and at a point that has
been identified here by P. We elaborate and expand this subject in Section A.2
of Appendix A. In particular, in working with the system {xr} and considering
all the relations at P, we link both versions of the R-tensor and their partial
derivatives to each other, as well as to the partial derivatives of the C-
symbols, which, in turn, we link to the Taylor-series expansion of the metric
tensor. This approach shows how the covariant R-tensor can help to express the

space in a concrete manner.

In three dimensions the covariant R-tensor contains (except for possible
sign differences) only six distinct components. We thus need six independent
commutators featuring these components as unknowns. In general, the commutators

will yield the six components in terms of the parameters G and H. If these




components all turn out to be zero at P, all components of the covariant R-
tensor must be zero and all of the first-order partial derivatives of the C-
symbols are admissible to be zero. In terms of the Taylor-series expansion of
the metric tensor, this indicates that {xr) is Cartesian to a second order, and
could possibly be Cartesian to a higher order. If, in addition, the first-order
partial derivatives of six independent components (and thereby of all
components) of the covariant R-tensor are likewise zero, similar reasoning
indicates that {xr} is Cartesian to at least a third order. If they are not

zero, the system is Cartesian only to a second order.

Accordingly, the necessary and sufficient conditions for the system (xr} to

be globally Cartesian is contained in equation (A.19) of Appendix A, namely

Ruijk = copstant = 0 , (8)

which Implies that the covariant R-tensor and all of its spatial derivatives at
P are zero. The indices in (8) may be interpreted to represent either all
components, or six independent components; the two Interpretations are
mathematically equivalent. Due to the fact that a globally Cartesian coordinate
system may exist by definition only in the flat space, (8) represents the

necessary and sufficient conditions for the space to be flat.

In summary, the "reversed" approach pursued herein uses the commutators to
express six independent components of the covariant R-tensor and their partial
derivatives at P via the parameters G and H. This leads to restrictions on the
space where G and H are admissible as coordinates. If (8) holds true, the space
is necessarily flat and {xr} represents a Cartesian coordinate system in this
space. If (8) does not hold true, the space is curved and {xr} is Cartesian
only to a certain order. The actual values of the components of the covarjant
R-tensor and of their partial derivatives at P can serve to express the metric

tensor, in the coordinate systenm {xr}. at arbitrary points in this space.

2.2 General Formulation of the Parameters G and H

In order to allow the analysis to proceed along the most general lines
possible, we impose only few broad conditions on the parameters G and H. The

latter are considered at the point P, where we have introduced a locally

10




Cartesian coordinate system (xr} assocjated with the orthonormal triad A, B, C.
At the same point, we define another orthonormal triad A, u, v, where v is
perpendicular to the pertinent N-surface. Since the latter is defined via
N=constant (N being one coordinate of the system) regardless of whether the

space is flat or curved, the basic gradient relation, namely

Nr = nur . (9)

is a tensor equation at P, valid in any space and in any coordinates (such as
the locally Cartesian coordinates, some general underlying coordinates, etc.).
The scalar n in (9) is the magnitude of the gradient vector Nr' The above-
mentioned broad conditions on the parameters are stipulated to be of any kind
that allows the triad A, a4, v to be uniquely related to the triad A, B, C via G
and H. To illustrate one such possibility, we project the known vector v onto a
plane formed by two of the three axes A, B, C, denoting the unit vector in this
direction by v'. The oriented angle between one of these two axes and v' can
constitute one parameter, and the oriented angle between v' and v can constitute
the other. Since such a construction does not involve (second-order) covariant

differentiation, it can be used unaltered whether the space is flat or curved.

Conversely, G and H can uniquely determine the triad A, u, v. In the above
illustration, v is constructed by back-tracking the definition of G and H.
These two parameters can then also express the plane perpendicular to v at P,
i.e., the plane tangent to the N-surface and containing 2 and u. As soon as one
of 2 and u is oriented with respect to a known direction in this plane, both
vectors A and p are uniquely expressed by the two parameters. The coordinates o
and ¢ represent a special case in this illustration. In particular, the two
axes forming the plane into which v is projected are A and B, and the axis used
for the orientation of v' is A. The first parameter, w, is the oriented angle
between A and v', and the second parameter, ¢, is the oriented angle between u'
and v. With regard to the "known direction” in the plane tangent to the N-
surface, it is now materialized by the intersection of the tangent plane with
the plane defined by v and C. The vector to be oriented with respect to this
direction is A, and the orientation angle is zero. In Chapter 12 of [H], the
definition of w and ¢ based on A, u, v can be provided in several ways from
(12.008), such as given by (12.003-005), and the unique determination of A, u, v
from o and ¢ is provided by equations (12.008) themselves. Here again, the

curvature of the space does not modify these procedures because it only affects

1




second- and higher-order covariant derivatives of vectors, or third- and higher-

order covariant derivatives of scalars.

In general, the unique determination of A, u, and v by the parameters G and

H is represented by

Rr = flAr + szr + f3Cr , (10a)
ur = g]Ar + ngr + g3cr . {10b)
Ur = hlAr + hZBr + h3Cr , (10c¢)

where fisfi(G'H)' gjsgi(G.H). hizhi(G.H); i=1,2,3. In compact notation, this

system of tensor equations, where the index r can also be raised, is written as

r 1 2 3 r
#r = g1 EZ 83 Br (107
r hl h2 h3 Cr

The formula (10') can be regarded as a matrix equation, where each of Rr, #r’ ur
and Ar' Br' Cr represents a row-vector of three elements. The transpose of the
matrix on the left-hand side of (10') would be written as [Xr, B Ur]’ where
each of lr. B vy would now represent a column-vector of three elements. Thus,
when the quantities such as Xr, ... or lr. ... are written beneath each other
they represent row-vectors; when they are written next to each other they

represent column-vectors.

Since the triads A, u, v, and A, B, C are orthonormal, the matrix of
coefficients in (10') is orthogonal. In particular, the Inverse of this matrix
equals its transform, i.e., this matrix pre- or post-multiplied by its transpose
yields the identity matrix. Accordingly, we are in the presence of the

following six independent constraints:

2 ) 2 2 2

fl + fz « £ =1, gl + 82 + g3 =1,

f8, + f,8, * f85 =0, g hy * gyhy + gghy = 0.
2 2 2

flhl + f2h2 + f3h3 =0 , h1 + h2 + h3 =1

Whether the coordinate system {xr) is locally Cartesian (in a curved space)
or globally Cartesian (in the flat space), A , B , and C_ behave as constants
r r r

under the first-order covariant differentiation as implied by (1). Thus, in

12




conjunction with (10') giving Ar' Br' Cr in terms of Xr' poo VL (via the
orthogonal matrix of coefficients), and with the above six constraints, (in
fact, their partial derivatives), after straightforward algebraic manipulations.

the covariant differentiation of xr, Heo and v, from (10a-c) yields

er - (leur * T13Ur)Gs * (T12ﬂr * Tlsur)ﬂs ' (11a)
= - —_ 1 1

g = CTypAn + Toav )Gy v (FTipd 0+ Togv ) By (11b)
= - - _ ' —- ]

Urs ( T13Ar T23‘ur)Gs v ( T1311‘ T23ur)Hs ) (11c)

where Gszac/axs, Hssaﬂ/axs. and where

T12 = (afl/aG)g1 + (afz/aG)g2 + (afa/aG)g3 , (12a)
Tig = (afl/aG)h1 + (afz/aG)h2 + (af3/aG)h3 . (12b)
T23 = (agl/aG)h1 + (agz/aG)h2 + (aga/aG)h3 ; (12c)
Tiz =(af]/aH)g1 +(af2/aH)g2 +(af3/6H)g3 . (12a')
Ti3 = (af]/aH)h1 + (8f2/aH)h2 + (afs/aH)h3 , (12b')
Tés = (agl/aH)h1 + (aga/aﬂ)h2 + (aga/aH)h3 . (12c¢')

The three primed quantities have the structure of their unprimed counterparts,
except that H replaces G. Having formulated jr' Hpo and V. in terms of general
functions of G and H (above symbolized by fi' gl, and hi' i=1,2.3), and having
differentiated them covariantly, we need to introduce curvatures associated with

A. u. and v before proceeding further.
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3. TENSOR INVARIANTS IN A GENERAL SPACE

3.1 Curvature Parameters

In following the usage by Hotine [1969] and Zund [1990]., we introduce five
curvature parameters of the system associated with N-surfaces, as well as three
additional curvatures. The curvature parameters are kl' kz, tl' Ty
the additional curvatures are al, 02, and 53. These quantities correspond to
the directions of the orthonormal triad A, g, v. In analogy to the terminology

and 72, and

"Hotine 3-leg" employed by Zund {1990], we refer to this triad as the "general
3-leg" (here A and ¢ are not constrained to Hotine's definition of 2 and u).

All of the above eight curvatures are identified as follows: k1 and k2 are
respectively the normal curvatures of the N-surface in the A and u directions;:
ttl are respectively the geodesic torsions of the N-surface in %th-se dJdiresctions;
Tl and 7, are respectively the curvature constituents of the normal to the N-
surface in these directions; 01 and 02 are respectively the geodesic curvatures
of N-surface curves in these directions; and, according to [Zund, 1990], €_ is

a complicated expression involving the geodesic torsions of the surface cuives.
All of these curvatures are scalar invariants considered at P. They involve
(single) covarjant differentiation of xr, e and V. and subseguent double
contractions with some of the contravariant vectors Xr. ur. and ur. Since no
double covariant differentiation of vectors takes place, these invariants are

unaffected by the curvature of the space.

Most of the formulas expressing these curvatures are adopted from Chapter 7
of [H]. upon replacing the notation k, k*, t, ¢, and o* respectively by kl' k2.
t], o]. and 02. and correspondingly replacing £ and j by 2 and ¢. The formula
for ol follows from Hotine's equation (7.04), while that for 02 can be derived
by similar means. The relation giving k1 is adopted from (7.03), while that for

k2 can again be derived similarly. Finally, the formula for t.  is adopted from

1
(7.08). On the other hand, §12-17 of [H] yields 7y and Ty and Zund [1990]
defines the contraction yielding 63 {below his equation 2). The contractions

producing the eight curvatures are listed as follows:

b
r

)
[}

r.s
“Hpgh A

i
Q

(13a)

rs _ _ rs _ .
lrsu u ursl u g, (13b)
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<
>
/7]
1]
i
<
>
-3
>
[/;]
]
x

rs rs 1 (14a)
PR N M (14b)
Rrsu us = —urslr S = ursurls = -vrburls = t1 ; (15)
—Arsurus = urslrus =Ty (16a)
—ursu us = ursurus =Ty (16b)
erurus = —ursxrvs = 63 (17}

The alternative expressions in (13a)-(17) displaying the opposite sign stem from
equation (3.20) in [H]. All of (13a)-(17) are derived in detail in Appendix C.

The expressions for the tensors er, ﬂrs' and Vrs in terms of the eight
curvatuscs ave vased un the following identity, with the general vector k to be
substituted for by any of A, u, and u:

_ m.n mn m n
Kpg = (kmnj A)A A kA )Xr#s ML N P

where the dots indicate six similar terms caorresponding to the leg combinations
uA, pp, pv, vA, vy, and vv. This identity is readily confirmed upon the
contractions, in turn, with Xrls. Rrus, Arus. ... . With the aid of the scalar
invariants from (13a)-(17), the above identity yields

A - al“r‘s ML

rs

S * e3“[‘”9 * klurxs * tlvr‘us b Tlurvs )

urs = -alxrxs - ozlrus h 63Rrus * tlyrls ¥ kZur‘us - 72 rs

Vps T TKpARAg T YiALmg 1ALy - DTS PN S YN A

featured in equation (7) of {Zund, 1990]. This reference 1s henceforth
abbreviated as [Z].

If these tensors are contracted with any of As. or us. or vs. they produce
the first useful set of formulas below. If the index s in the contracting
vectors is replaced by r, another set is obtained, listed below for future

reference as well. The first set reads

s s _ s _ _ i
erl 01#r+k1vr ! At = uZ“F*tlur ’ xrsu e3‘“1‘ Tlur ' (18a)
2 s s

—alxr+t1ur ’ #rsu —021r+kzur ! ”rsu

U

rs —631 TTVL (18b)

r
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S S S

Ursx = _klxr—tl“r ! ursﬂ - ¢tlxr-k2”r ! Ursu - Tlxr+72#r ’ (18¢)
These equations could also be written with the index r raised.
Since it holds true (see e.g. Hotine's equation 3.19) that
r ro_ ro_
Apsh = BpgH Yrs¥ 0.
the second set is limited to the following equations:
A w5 = -p AN =02 +vo pu + e v (19a)
rs¥ Hrs 17s 2Fs 37s °
A o = -y A= k. A + t . u - v v (19b)
rs rs 1's 17s 1°s '
ro_ r _ _
Hrg¥ T TVpshH 1% * kz”s TaVYs (19¢)

Contractions of (18a-c) with Rr. ur, or ' recover all eight curvatures in
(13a)-{(17). The same can be said about (19a-c) in conjunction with ls. us.

S
or v .

In analogy to the formulas (13a)-(19c) making use of space vectors, we
present some of their counterparts in terms of surface tensors. In particular,

of the eight curvatures listed in (13a)~(17). all except 16X ., and &, can be

T

written as contractions of surface tensors. Such formulas areanot nechsary to
provide new relationships in the current development, but can serve to verify
the consistency and correctness of some results. The equation numbers of these
and subsequent formulas will correspond to their numbers in the space context,
except that they will be attributed a prime. In consulting equations (4.07)-

(4.10) in [H]. we write

a.B aﬁ_ '
A -uaﬁx A = al , {13a"')

& B [
—uaﬁl u 2 - {13b')

Xaﬁu
B

W

"
Q

24
Xaﬁu U

These relations are derived separately in Appendix C, equations (C.38,40). The
formula for k1 follows from Hotine's equation (7.03), while that for k2 can be
derived by similar means:
o . B ,
baﬁx A 1 (14a')

a B . '
baﬁu u = k2 ; (14b')

!
x

§

both are developed separately In Appendix C, equations (C.37,39).
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In the same vein, the relations for tl are obtained from (7.08) in {H] as

alﬁ

a B _ - ‘
ba At = baBu = tl . (15*)

8

derived separately in Appendix C, equation (C.41). Hotine's equations (4.07),
(4.10), (4.08), and (4.09) themselves yield

B8 _ B _ . '
Aaﬁl =on, . Aaﬁu =o,u, (18a')

o
B _
#(:1)3/I 1 «a uaﬁ”

~021a . (18b')

These equations could also be written with the index « raised. Finally,
equations (4.11) in [H] lead to

a

laﬁu

a t
-uaﬁl = 0113 + 02“8 . (19a')

which, in turn, lead to (13a') and (13b') upon the contractions with XB and uB

respectively.

3.2 Commutators for a General Furction

We first introduce the concept of leg derivatives (scalar invariants) in
conjunction with F, an arbitrary differentiable scalar function of position in
space. In following the convention used in {Z], at a given point (e.g.. P} we
denote them by

F/l = prx . F/z =Fu . F/3 =F v . (20)

where Frzalh/axr. Accordingly, we can write

Fm N F/llm * F/Z”m * F/3um ) (21)

If dA, du, and dv denote the length elements along A, u, and v, the quantities
Fr1 Fra
These leg derivatives are synonymous with directional derivatives along the
directions of the 3-leg. Equation (21) falls in a general category of tensors
expressed via A, y, and v, such as

vr = alxr + azur + asur‘

w = A R

rs -~ 911408 * 3124

+
I’#S

17

, and F/3 in (20) are seen to be dF/8A. dF/du, and 3dF/3v. respectively.




etc., where a,, a,,, are referred to in [Z] as "leg coefficients”. These

i ij
coefficients change only under leg changes, not under coordinate transformation.

As is seen from (21), leg derivatives form a special class of leg coefficients.

Any one of the leg derivatives themselves can represent another scalar

function "F", and can be treated in analogy to (21):

B idn = Fri12n * Frupebn * Frijg¥n i 1 °1.2.3 . (22)

where

_ s ) s ) s
Foapn = (F, 4 Foijo® (F g# Frip3= F, gy - (23)

Thus, for example,

= (F,) u° = 3UF, )/ 0u = 3/3u(37/22)

Fri2 /1)s

If the last equality were written as azF/axau. it could be confused with
ordinary partial derivatives and changed into azF/auax. This, however, would
be incorrect because the leg derivatives are not permutable as the ordinary
partial derivatives. Such pitfalls, exposed in [2]. entice us to employ
consistently the unambiguous leg-derivative notation. We remark that in (2],
the leg derivatives are defined in the section "The Hotine 3-leg and

Commutators”, and are further elaborated in Appendix A {ibid.].
When differentiated covariantly, equation (21) yields

(24)

an N (F/l) Ag T

n'm F/2)n#m * (F/3)num ¥ F/lxmn * F/Zumn ¥ F/3ynn )
If we contract (24), for example, with Amln, we have

m.o - m.n m.n
anx A = ¥ + F/zumnl A+ F/Sumnl A,

where the contractions in the last two terms on the right-hand side have already

been presented in (13a) and (14a). 1In contracting (24) in succession with lmln.

lmun. etc.. and consulting (13a)-(17). we obtain

m.n _ - _
Fon? A = F 0 7 9 F 0 - KF g (25a)
mn _ _ _ .
Fon? # = F i, 7 92F 0 - Y F 5 (25b)
F Am" - F - &P, + 7.F,. : (25¢)
mn” Y /1/3 3ts2 t TiFy3




Fn# A = F oy v o4F 0 - 4 F 5. (25a")
P u"u" = F + 0. F, - k.F -
mn# # s272 F %280 T KRF 5 (25b")
m n
Fon# V' = F a/g * €5F 0 + T,F o (25¢')
m.n - e
Fan? 2 = F g/ P KyF 00 YF 5 (25a")
F V" = F + t. F, +Kk.F 25b"
mn H /3/2 1 /1 2 /2" ( )
mn .
Fan” ¥ = Fiaya = 14 F oy - TF (25¢")

In terms of the leg coefficlients, Frs can be written following the pattern

of k seen below (17):
rs

]
1]

m.n m n m n
(anl A )Arls + (ank u )Rrus + (anl v )lruS

+

m.n m n m n
(anu A )“rxs Y ‘anu # )urus * ‘anu v )urus
m.n m n mn
+ (anu A )urls + (anu u )urus + (anu v )vrvs . (26)
where the leg coefficients, listed in (25a-c"), are shown in parentheses. As

has been indicated in conjunction with (6a.b) and (7), we formulate the

commutators via

F - F =0 . (27)
rs sr

If we generate a new equation by interchanging r and s in (26), and subtract

this equation from (26), we deduce that the condition (27) is equivalent to

mn m.n
Fo A # — F @& =0
F VA" - ™" -0,
mn mn
n m n
anu v Pmnu u =0

The substitution of (25a-c”) into these formulas yields the desired commutators:

Froj2 = Fra/1 = 99F)y ~03F,5 =0, (28a)
Frasa = Fraze = (41783 F)y ~ KpF p m TpF 3 = 0 (28c)

Equations (28a-c) are identical to the commutators listed in (2) of {Z].
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As an added benefit of this demonstration, we can formulate AF, the

Laplacian of F, with almost no additional effort. From the definition

and from the leg formulation of the associated metric tensor, namely

rs r.s

g = A A +prps+vrus

’

one has

_ r.s r s r s
AF F_ A A + Frsu uoo+ Frsu v (29)

The same result follows upon applying grs directly (without the leg formulation)
to (26). With (25a-c") equation (29) yields

AF = F 1 * Frasa* Frayg = (170 0F = (v,%0 )F , - 2HF o . (30)

where

and where H is known as the mean curvature, which need not be confused with the

parameter H (generalized latitude).




4. LEG DERIVATIVES AND COMMUTATORS IN TERMS OF FIVE CURVATURE PARAMETERS

4.1 Leg Derivatives of Curvatures in General Terms

In this section we present formulas giving pairwise combinations (here sums
or differences) of the leg derivatives of curvatures in a general space. As an
example, we develop kl/a—tl/l along two separate paths. The initial equations
in the first path are (14a) and (15), where the first alternatives are utilized

(containing er). namely

These equations yield

- t r.s t r.s t r,s t
Kija = (KPDep7 = AV A+ A v v A v Ao

_ t _ r s, t r s.t r s,t
t1/1 - (tl)t/z ertu uoAT erutu A+ eru ”tx !

where uz could also be written as urt. etc. After an exchange of the indices s

and t in the first of the three terms comprising t the required combination

1/1°
kl/2_t1/1 is seen to contain a contraction of the covariant R-tensor:

r.s t _ m r,s t _ ur,st
(lrst Arts)v Aw = (R.rstxm)v Ak Rurstx vAae

which follows from (5.02) and (5.06) in [H]. As usual, this and subsequent

tensor equations are considered at the point P.

Since contractions of the covariant R-tensor with four contravariant
vectors of the general 3-leg occur in each of the required combinations, it is
useful to simplify the notation. Upon defining the ranking of A, g, and v as
the first, second, and third, respectively, the adopted symbolism lists in
parentheses the ranking of the vector attributed the first index of the
covariant R-tensor (below listed as u), followed by the ranking of the vector
attributed the second index (below listed as r), etc. This convention is

exemplified by

ur.s t _
Rurstx v 2 u = R(1.3,1,2) ,

which is the first term in the execution of k In expressing the other

172 Y11
terms, one draws on the first two formulas from (18a), on the first formula from
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(18b), on the first two formulas from (18c), and on (19b). Accordingly, the

result is

k1/2 - tl/l = R(1,3,1,2) + (kl—ka)o1 + 2t102 .

The second path, used as a means of verification, proceeds via contractions
of surface tensors. In the present case, we have (14a') and the first

alternative of (15') as the initial equations:

K PP L t. = b 2%P .

1 baB 1 af

In analogy to the above procedure, we form

- t T . a B 7 a. B 7 a.B T
k1/2 - (kl)t“ (kl)r“ bouiiv'/I A banTx g baBZ 17# '
€= (t). A% = (t) AT = b 2%PaT v b %BAT v v 2%PAT

1/1 1't i’y a7y aB’r aB T

After an exchange of the indices 8 and 7 in the first of the three terms

comprising tl/l’ the required combination will involve Hotine's formula (6.22):

baBT ) bars N —Rurstu xax8x7

Upon employing identities corresponding to (6.07) in [H], such as

where h is a surface vector, the first term in the result for k1
to be

/2‘t1/1 is seen

u,r.s t _ ur,s t
_Rurstu A A u = Rurstx v A u = R(1.3,1.2),

the same as that found in the previous paragraph. In expressing the other
terms, we draw on (18a') and the first formula from (18b'), and on (14a')-(15'}).
The final result for kl/2~t1/1 is again identical to the one presented in the
preceding paragraph.

In terms of space vectors, a required combination of the leg derivatives of
curvatures i{s derived upon first performing the covariant differentiation of the
two pertinent curvatures from suitable alternatives in (13a)-(17), contracting
efther outcome with the pertinent contravariant leg vector, interchanging the
second and the third indices in one of the two terms containing second covariant
derivatives, and subtracting one equation from the other. Subsequently, the

difference between the second covariant derivatives of a vector in the resulting
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equation is expressed via the covariant R-tensor; the latter 1s always
contracted with a permutation of four contravariant vectors of the general
3-leg. Finally, all of the remaining terms are obtained with the aid of (18a-c)
and (19a-c). With regard to the (verification) procedure using surface tensors,
its description is similar except that it involves (13a')-(15') instead of
(13a)-(17), (18a',b') instead of (18a-c), (19a') instead of (19a-c). and,
additionally, Hotine's formula (6.22).

The required combinations derived in this manner are listed as follows:

kl/2 - tl/l = R(1.3,1,2) + (kl-kz)a1 + 2tla2 , (31a)

k +7r = R(1,3,1,3) + k2 + t2 + 12 + 2t €, + 1.0 (31b)
1/3 1/1 TR 1 1 1 13 21 °

t1/3 + Tl/z = R(2,3.1,3) + 2Ht1 * Ty (kl—kz)e3 * 7,0, . (31c)
t1/2 - k2/1 = R(2,3,1,2) - (kl—kz)o2 + 2tla1 . (31d)
t1/3 + 72/1 = R(2,3.1,3) + 2Ht1 + 7172 ~ (kl—k2)53 - 7101 . (31e)

k. + 7. =R(2.3.2.3) +k2+t2+72 -2t e, - 71,0 (31f)
2/3 2/2 T 2 1 2 13 172 7

c -0 = R(1.2,1,2) + k k, - tz + 02 + 02 (31g)
1/2 2/1 e 12 1 1 2’

01/3 - 63/1 = R(1.,3,1,2) - lez + tlTl + kla1 + tlo2 - 7153 + 5302 , (31h)

02/3 - 63/2 = R(2,3,1,2) + k271 - t172 + tla1 + k202 - 7253 - 5301 . (311)

In the approach using space vectors, the initlal equations have been: first
alternatives in (14a) and (15) for (31a): first alternatives in (14a) and (16a)
for (31b); first alternatives in (15) and (16a) for (3ic): first alternative in
(14b) and third alternative in (15) for (31d): third alternative in (15) and
first alternative in (16b) for (31e); first alternatives in (14b) and (16b) for
(31f); first alternatives in (13a.b) for (31g); first alternatives in (13a) and
(17) for (31h); and first alternatives in (13b) and (17) for (31i). In the
(verification) approach using surface tensors, the initial equations have been:
(14a') and first alternative in (15') for (31a): (14b') and second alternative
in (15') for (31d); and first alternatives in (13a'.b') for (31g). A detailed
derivation of (31a-i), including the verification approach, is presented in

Appendix D.
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A few remarks are in order with regard to (31a-i). Upon differencing (31a)
and (31h), (31c) and (31e), and (31d) and (311i), the R-terms are eliminated and
the resulting identities, valid in any space, are thereby simplified. As a
matter of verification, we notice that the identity produced upon differencing
(31c) and (31e), namely

Tz " T2y = 11% Y 1% (32)
could be derived by other means. In particular, if we use the definitions
= (1/m)n 2% = (1/n)n - (i/m)n,® = (1/m)n (32")
71 4 /1 2 t# /2 "

express the appropriate leg derivatives, difference the resulting relations, and
make use of the second formula in (18a) and the first formula in (18b), we
recover (32). In the process, the relation nrs=nsr has been utilized. This is
Justified since N and thus also n are proper invariants by definition and,

accordingly, have symmetric second-order covariant derivatives in any space.

Next, we observe that If the pertinent R-terms are zero, (31a) and (31d)
are essentially Hotine's equations (8.23), referred to as "another form" of the
Mainardi-Codazzi equations. Clearly, if the space is flat and thus the
covariant R-tensor is identically zero, these Mainardi-Codazzi equations are
confirmed. However, 1t is now seen that they hold true also in a class of
curved spaces, where R(1,3,1,2)=0 and R(2,3,1,2)=0. We comment that no
generality has been lost by considering a special pair of orthonormal surface
vectors (A and p), since. if these two R-terms are zero for one such pair, they
are zero for all pairs. Indeed, if we express a general pair Qr=lrcos8+ursln8,
jr=-1rsin8+urcose. and stipulate that Rurstﬂuurﬂsjt=0 and Rurstjuurlsjt=0.
we notice that, for any @, either stipulation entails no constraints other than
the above R(1,3.1,2)=0 and R(2.3,1.2)=0. We also comment that the combinations
of the leg derivatives of curvatures are expressed on the right-hand sides of
(31a-1) in terms of all eight curvatures. We will be able to express them in

terms of the five curvature parameters only after linking ¢,., 6., and &, to

1 2 3
these curvature parameters via G and H.

Finally, we note that if all the contractions of the covariant R-tensor in

{31a-1) were zero, these equations would correspond respectively to the

guantities (wl). (wII). (wIII). (¢I). (¢II). (¢III). (w§). (w}X , and (w;II)
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identified in the last nine equations listed in the section "Hotine's Problem
Re-examined" of [Z]. However, in the case of our equations (31d-f). the

correspondence with (¢I). (¢II), and (¢,..) of [Z] is achieved only after using

the identities (10) [ibid.], which "holzlznly upon introduction of (w.¢) as
coordinates on the N-surface"” [ibid.]. Thus, even if the pertinent contractions
of the covariant R-tensor were zero, our equations (31d-f) would still be valid
in a more general environment than their counterparts in [Z]. Since Zund
confines his analysis to the flat space from the outset, implying the vanishing
of the covariant R-tensor. and since he purposefully introduces the coordinates
w and ¢ at an early stage, his development leads to the nine quantities (wI)-

(w;II) as listed in [Z].

The distinction between (wI)-(wfII) and the above equation set (3la-i)
underlies the distinction between the development in [Z]. confined to the flat
space and concerned with "Hotine's assertion”, and the development herein, which
proceeds in a space of general curvature characteristics and delays the
introduction of the first two space coordinates (generalized to G and H) for a
later stage. We remark that if our analysis were confined to the flat space
from the outset, and if this (global) flatness were to be guaranteed, then we
would be compelled not only to have the covariant R-~tensor at P equal to zero,
but all of its spatial derivatives at P equal to zero as well. Equivalently, we
would require that the covariant R-tensor be zero at every point of the space

(see the latter part of Section A.2 in Appendix A).

4.2 Leg Derivatives of G and H in Terms of Five Curvature Parameters

In order to link the parameters G and H to the curvatures, we return to
(11a-c) and contract these equations respectively with lr, yr, and v*. Of the
resulting system, three equations are identically zero, three are in general
different from zero, and the remaining three are repetitious. The three non-

repetitious equations form the system

r —

r
A u T T!
rs ] 12 12 Gs Gs
= ! =
Rrsy T13 T13 T . (33)
r Hs Hs
1
bﬂrsu A T23 T23
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Each of the three entries on the left-hand side represents a row vector of three
elements. and the left-hand side is accordingly a matrix of dimensions (3x3).
The entity inside the first pair of brackets on the right-hand side is a matrix
of dimensions (3x2) as indicated, denoted T. And the last entity in brackets on
the right-hand side is a matrix of dimensions (2x3), where GS and Hs represent

row vectors of three elements each.

In accordance with the uniqueness of G and H (in conjunction with a given
3-leg), the partial derivatives Gs and Hs are also assumed unique at P . Thus,
the matrix T has the full column rank 2. 1In consulting (19a-c), we observe that
the first row on the left-hand side of (33) is formed through the curvatures o_,
05t and 63. whereas the second and the third rows are formed through the five
curvature parameters k]' k2, tl' Ty and 72. Accordingly, should Gs and Hs be
expressible via these curvature parameters, the submatrix of T comprising the
second and the third rows must be nonsingular. We henceforth make this

assumption and discard the cases where it would not hold true.

We further discard the case where T12 and Tiz are both zero, which would

imply that all of Iy 02. and &, are zero. This indicates that at least one
other nonsingular submatrix of T must exist. Suppose that the submatrix formed
by the first and the second rows of T is singular, so that the first row is a
linear combination of the second. Then the submatrix formed by the first and
the third rows must be nonsingular because otherwise the third row would be a
linear combination of the first and thereby also of the second, contrary to the
present situation. We denote the determinant of the submatrix formed by the
second and the third rows of T by the letter D, and refer to the solution
produced by the corresponding subsystem as the "main solution". Of the other
two submatrices of T, we assume that the assuredly nonsingular one is formed by
the first and the third rows, denote its determinant by D', and refer to the

solution produced by the corresponding subsystem as the "alternate solution".

Finally, we denote the determinant of the submatrix formed by the first and
the second rows of T by D". We make no assumption as to the singularity or
nonsingularity of this submatrix. and do not resolve the corresponding
subsystem. (If it turned out, in some cases, that D'=0 but D"#0, we could
interchange the second and the third equations in the above system 33 and

proceed in analogy to the current development.) In summary, we have
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D = T  Thy -~ TjgTyg # O . (34a)
D' = T, Ty, - TI,T, #0, (34b)
D" =TT ~ TyoTy5 (34c)

the subsystem associated with D leads to the main solution, while the subsystem
assocjiated with D' leads to the alternate solution. We will formulate the

commutators and resolve as many questions as possible using the main solutioun.

If we solve for Gs and Hs from the main subsystem consisting of the second
and the third equations of the system (33), and contract them in turn by zs, us,

and vs. we obtain the following leg derivatives of the parameters G and H:

G

(k -t,T!.)/D , 6

17237 4T3 (4, Tyy "k, Tig)/D

P sz = (11 Ta3 ke Tyg
G5 = (771 Ta3%7,T13)/D - (39)
H, = (-k T+t T )/D . Hyp = (-t Togtk,Ti5)/D
Hyg = (11Tp3773Ty3)/D - (36)

As is seen above, the formulas giving H/i' i=1.2,3, are obtained from those

giving G/i upon the following replacements:

Tag * ~Taz - Tz » "Tys - (36")
This simple relationship will be instrumental in providing shortcuts in the

derivations. If we insert the solution for GS and Hs into the first (dependent)

equation of the system (33), we obtain identities for o,, o

1 , and &, in terms of

2 3
the five curvature parameters:

o, = (le'—tlD")/D . 0, = (tlD'—kzD")/D . €y = (—TID'+720“)/D . (37)

These identities will enable us to express, for example, the right-hand sides of
(31a-1) in terms of the five curvature parameters.

In developing the double leg derivatives from (35), and forming G/./n

-G . we first utilize the general relation
/n/m

(fM)/n = f nH + fM

/ /n "’

and subsequently use a more specialized relation

(TiJ/D)/n = [a(TiJ/D)/aG]G/n + [a(TiJ/D)/aH]H/n .
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where each Tij may be replaced by Tij' To streamline the derivations, we denote

k1 =a, ., t. . =a,, -rl =a,, t,=b , k,=b, . —72 = b (38)

1 1 2 2 2 K

and write (35) in a compact form as

G/n = (apTa3 by Ti5)/D .

This form serves with advantage in expressing H/m' which follows readily from
G/m in accordance with (36'). The benefit to the derivations emerges, for

example, in conjunction with the intermediate results

amG/n a6,

—(ambn—anbm)Tls/D .

bmG/n - bnG/m

- - 1
(ambn anbm)T23/D '
which., due to (36'), can be subscguently applied to the leg derivatives of H.

From the formulas, notation, and intermediate results outlined in the

preceding paragraph, straightforward algebra leads to the general expression

- ~

G/m/n ) G/n/m ) ([am/n " %a/m " (am“n “nbm)Kls/D}Té3
- [b - b o * (g -a b )K,./D]T .}/D, (39)

where

= ! — = ' -
K13 8T13/aG 8T13/8H . K23 aT23/aG aT23/aH . (40a,b)

We reinstate the curvature parameters from (38), and specialize (39) for m=1,

n=2, then for m=3, n=1, and finally for m=2, n=3. This yields the differences

of the double leg derivatives of G in terms of the five curvature parameters:
S/172 = G2y = UKy p = tyyp v kkymt

Sty Tkt kKot

JK13/D1T5,

— N e 0D

)Kza/D]Tis}/D ' (41a)

G710 = Sy1y3 = (kg g+ 7y,y ¢ (6 7 <K 7)) Ky /DI T),
¢ [ty 5 * Tyyy + (t 7,7k T, K /DITI)/D . (41b)

Gras3 ™ Syap =ty g * Tysp * (k1 -t 7 0K 0 /DI TSy
- [ky 3+ Ty, * (K7 =t 7,)K,0/DIT )/D . (41c)

These formulas apply in a general space, hence we do not replace klkz—tf by

K. the Gaussian curvature, which would be valid only in the flat space. The
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expressions for H/m/n_H/n/m can be transcribed from (39) and, in particular,
from (41a-c) upon recalling (36'); there is no need to carry out this direct
transcription explicitly. All such differences of the double leg derivatives
can be expressed through the five curvature parameters if one substitutes the
appropriate combinations of the leg derivatives of curvatures from the relations

developed below, in particular, from (42a-f).

4.3 Leg Derivatives of Curvatures in Terms of Five Curvature Parameters

In using (37) in straightforward substitutions, we reformulate (31a-i) in
terms of the five curvature parameters. This, together with (41a-c) and similar
relations for H, will enable us to present also the commutators in terms of the

five curvature parameters. The reformulated results are

. - - 2_ 2 ] “
k1/2 - tl/l = R(1,3,1,2) [(k1k2 2t1 kl)D + 2HtlD /D , {(42a)
2 2 2
Kyyg ¥ Tyyp = RUOLB.L3) + Ky« £y« 1)
+ [(k172—2t171)0 + tlrzD /D , (42b)
t1/3 + 71/2 = R(2.3,1,3) + 2Ht1 + 7172
+ [(k1r1~k211+tlrz)0 - kerD 1/D , (42c)
_ . Chel L2 0
t1/2 - k2/1 = R(2,3.1,2) + [2HtID + (klk2 2t1 kz)D /D , (42d)
t1/3 + 72/1 = R(2,3.1,3) + 2Ht1 * 17,
- [sz1D + (klrz-kzrz-tlrl)D 17D , (42e)
2 2 2
k2/3 + 72/2 = R(2,3,2,3) + k2 + tl T,
1] - "
+ [tyr, D' + (k7 -2t 7,)D"]1/D , (42f)
2
Ci/a = 9y = R(1.2,1,2) + klk2 tl , , \
s [k2+t3) 02 - aHe DD + (K2+t3)D"?1/0% | (42g)
1 1 1 2 1
01/3 - 53/1 = R(1,3.1,2) - klrz + tlrl

2

1
2 2 2
- ' . [ " _ " C
+ [ t]rlD v (k271+t172)0 D kzrzD 1/

2 2, ., "
+ [(k1+t +71)D (2Ht1+7172)D 1/D

. (42h)
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g - &

2/3 = R(2,3,1,2) + k271 -ty

1°2
_ 2
+ [(2Ht1+71r2)0 (k2+t

3/2
2
1

2
] - t ”"
+ [kITID (k172+t171)D D" + t

+r§)D"]/D

wl 2
1720 1/D% . (421)

4.4 Commutators in Terms of Five Curvature Parameters

We are now in a position to formulate the desired commutators; we begin by

transcribing (28a-c) for G:

C/42 =~ C/2/1 T 916,13 T 936,70 (43a)
S3/1 = S/173 * K1Cp * (4 %806, - 10,5 =0, (43b)

We next substitute (41a-c) for the differences of the double leg derivatives of
G, into which we first substitute (42a-f) giving combinations of the leg
derivatives of curvatures; substitute (35) for the (single) leg derivatives of
G; and substitute (37) for 01' 02. and 53. It is unnecessary to carry out these
tasks for H, due to the fact that both the leg derivatives (in equation 36) and
the differences of the double leg derivatives (past equations 4la-c) follow from
their counterparts for G upon the replacements (36'). The same then holds true
for the corresponding commutators. Since all of the above substitutions are
expressed in terms of the five curvature parameters, so are the resulting

commutators for G and H. In performing the operations as just indicated, for

the G-commutators we deduce

2 . '
(R(1.3.1.2) + (k k,~t])(K ,-D')/D]T,,

2 (1) ] -
- [R(2,3,1,2) + (k;ky-t7) (K #D")/D]T 0 = O . (44a)
-{R(1,3,1,3) + (tlrl—klrz)(Kl3—D')/D]Té3
+ [R(2,3.1,3) + (t]Tl—k]rz)(K23+D")/D]Ti3 =0 (44b)
[R(2.3,1,3) + (kzrl—tlrz)(Kls—D')/D]Té3
- {R(2,3,2,3) + (kzrl—t]rz)(K23+D”)/D]Ti3 =0 . (44c)

The three H-commutators are obtained from (44a-c) upon the replacements (36').
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In abbreviated notation, the three G-commutators read

r ' = _ ' [ ' _ ' =
UiTag ~ ViTyg = 0« “UTog # VT =00 UgTyg - VaTig =0, (45a)

where the terms Ui and Vj. i=1,2,3, are easily identified from (44a-c). The

H-commutators are similarly written as

-U. T + V. T =0, u,T -V, T =0

1723 1745 -U,T + V. T =0 . (45b)

2 23 2713 ’ 323 313
Upon assuming that Tés#o. (45a,b) yield

-VlD =0 , —VzD =0 , —VsD =0

If this assumption is invalid, but Tis#o holds true. it follows that
-UlD =0 , _UZD =0, —USD =0 .

Since D#0 (see equation 34a), at least one of the two assumptions must be

true; in either case we obtain

U1 =U,=U0,=0, Vv, =V_=V_=0. (46a.b)

Finally, we present the results (46a,b) explicitly as

R(1.8.1.2) + (k k,~t2)(K ,=D')/D = 0 . (47a)
R(1,3,1.8) + (t;7, -k 7,)(K 4,-D')/D = 0 . (47b)
R(2.,3,1,3) + (kzrl—tlrzj(Kla—D’)/D =0 ; (47c)
R(2.3,1,2) + (k k,~t2) (K, +D")/D = 0 . (47d)
R(2.3.1,3) + (t 7, -k 7,)(Ky +D")/D = 0 , (47e)
R(2.3.2,3) + (ky7r,~t,7,)(K,g+D")/D = 0 . (47¢)

Equations (47a-f) are equivalent to six commutators for G and H in terms of the
five curvature parameters and of the contracted covariant R-tensor. We express
the latter conveniently in a temporary coordinate system at P, which we define
as locally Cartesian, but with the coordinate axes directed along the triad A&,
g, v instead of A, B, C. In this system, the contractions R(1,3,1,2), etc., are
nothing else but R1312. etc., that is. actual components of the covariant R-

tensor. Since the latter has only six independent components, six equations can
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be used to resolve it. Unfortunately, only five independent components of this
tensor are represented by (47a-f), due to both (47c) and (47e) containing
R(2,3,1,3). In order to gather one additional independent relation in view of

the covariant R-tensor. we are compelled to resort to the alternate solution.

4.5 Alternate Solution

If we solve for Gs and HS from the alternate subsystem consisting of the
S

first and the third equations of (33), and contract them in turn by ls, y , and
us. we obtain two sets of leg derivatives, the first of which reads
Gy = (03 Tp57 4y Typ) /D0 G o = (0T 7k, Typ) /D,
= L] t 1
6/3 (53T23+72T12)/D . (48)
The three leg derivatives of H follow from (48) upon the replacements
Ta - -T23 . le - -le . (48"')

In analogy to (38), we denote

9y =8 9y =8, . &g F a5, 1 1 2~ P2 7% B3
In pursuing a path paralleling the development that followed (37), we arrive at
a relation for G/m/n—G/n/m similar to (39), where., however, D is replaced by D
{in three instances), T!

13
the latter is defined as

is replaced by T! and K]

12° is replaced by K1

3 2'

K12 = ale/aG - ale/aH . (49)

The specializations for n, m yield the formulas for G/1/2_G/2/1' G/S/I_G/l/s'

and 0/2/3-6/3/2. However, unlike (41a-c), these formulas contain all eight
curvatures, i.e., contain 01' 02. and 53 in addition to the five curvature

parameters. The same can be said about the formulas for H H , which are

/m/n " /n/m
obtained from their counterparts for G upon the replacements (48').

The double leg derivatives just mentioned can be rid of the curvatures 01'
9,0 and 53 upon applying the identities (37) transformed into the following

useful form:

(kza

2, ., .
—tlaz)D = (klkz—tl)D , (S0a)
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(t. e +7201)D = (klrz—t

1%3 TI)D' ' (50b)

1
(k2£3+7202)0 = —(karl—tlrz)D . (50c¢)
These equations lead to the results paralleling (41a-c), namely

= _ _ 2 ,
C/172 7 8oy = W0y 5 = 05,y * (Kiky=t 0K ,/D]T,,

(€35~ Kpyq * (kyKy=t)K /DIT; }/D" (51a)
/371 7 C173 = 17loy,5 7 €y ¢ (47K 750K 5/D] Ty,

Lty g v 1yt (87 oK T, K, /DITL MDY L (51D)
/273 = Bras2 = 95,5 = &3/5 * (Ky7 -t 7, 1K /DT,

(kg g * Ty p * (Ko7 -t 7,)K0/D]T /D" . (51c)

The formulas for H are obtained upon the replacements (48'). All of these
differences of the double leg derivatives can be expressed through the five
curvature parameters if one substitutes the appropriate relations in terms of

the leg derivatives of curvatures from (42d-i).

To obtain the G-commutators, we recall equations (43a-c) and make the
following changes: substitute (51a-c) for the differences of the double leg
derivatives of G, Into which we first substitute (42d-i) giving combinations of
the leg derivatives of curvatures; substitute (48) for the leg derivatives of G:

and substitute (37) for oy 02. and 63. This yields

2 :
(R(1.2.1.2) + (k k,-t]) (K ,+D)/D]T,,

- (R(2.3.1,2) + (klkz—t‘f)(K23+r)")/|3]'r1'2 =0 (52a)
-[R(1,3,1,2) + (tlrl—klrz)(K12+D)/D]Té3

+ [R(2,3,1.3) + (t 7, -k 7,)(K,,4D")/D]T;, = O . (52b)
(R(2.3,1,2) + (k,7, -t 7,) (K ,+D)/DP]T;,

- [R(2,3,2.3) + (k,7 -t 7,)(K,,4D")/D]T,, = O (52¢)

The three H-commutators are obtained from (52a-c) upon the replacements (48').

The derivation of (52a-c) could have been slightly shorter if o o.., and 53 had

1" 72
been replaced at a later stage. Instead of using (5la-c) in the substitution

described above, we could have used the formulas mentioned (but not listed)
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below (49); into these we could have substituted (31d-i) rather than (42d-i);
and to the outcome we could have applied (50a-c). thereby by-passing (37).

Having found the six commutators, we follow the procedure that has led from
(45a) to (46b), in which D#0 is now replaced by D'#0. Obtained in this

manner, the first three of six equations paralleling (47a-f) are presented as

2
R(1.2,1,2) + (klkz_tl)(K12+D)/D =0 , (53a) -
R(1,3,1,2) + (tlrl-klrz)(K12+D)/D =0 (53b)
R(2,3.,1,2) + (kzrl-tlrz)(K12+D)/D =0 (53c)

The remaining three equations turn out to be (47d-f). The new system again
features only five independent components of the covariant R-tensor; we observe
that the third and fourth equations (i.e., equations 53c and 47d) contain the
same quantity R(2,3,1,2).

The important fact, however, is that the alternate solution leads to
R(1,2.1,2) in equation (53a), a quantity that does not appear in any of (47a-f):
all the other contractions have already been produced by the main solution.
Accordingly, (53a) replaces (47c) and thereby creates a combined system capable
of resolving six independent components of the covariant R-tensor. We reorder

the equations and present the final system as

R(1.2.1.2) + (k k,~t5)(K ,+D)/D = 0 . (54a)
R(1,3.1,8) + (t;7, -k 7,) (K 4=D')/D = 0 (54b)
R(2,3.,2,3) + (kzrl—tlrz)(K23+D")/D =0 , {(54c)
R(1.3.1,2) + (K k,~t2)(K ., =D')/D = 0 (54d)
R(2.3.1.2) + (k k,~t2)(K,,+D")/D = 0 (54e)
R(2.3,1.3) + (t 7, -k 7,)(Kyq+D")/D = 0 . (54f) -

We remark that in (5.25) of [H], the quantity Rurstx“urxspt is denoted C and is

referred to as the Riemannian curvature of the section of space defined by &, u.
This quantity is our R(1,2,1.2) from equation (54a). Similarly, R(1.5.1.3) and
R(2.3.2.3) from (54b,.c) can be called the Riemaannlan curvatures of the space

gsections defined by A, v, and by u, v, respectively.
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5. APPLICATION TO HOTINE'S COORDINATES o AND ¢

5.1 Covariant Riemann-Christoffel Tensor

We specialize the parameters G and H to Hotine's coordinates o and ¢, and
find out what it entails in terms of the covariant R-tensor and the space. The
comparison of equations (10a-c) herein with the formulas (12.008) in [H] reveals

the following correspondences:

f1 = -sinow . f2 = cosow . f3 =0 :
gl = -sin¢ cosow . g2 = -sin¢ sinow . g3 = cos¢ ;
h1 = cos¢ cosw . h2 = cos¢ sine , h3 = sing¢g .
In consulting (12a-c'), we deduce that
le = sing , T13 = -cos¢ . T23 =0 , {55)
Ti2 =0 , Tis =0 , Té3 = -1, (56)

which, together with (40a.b) and (49), yield

K12 = -cos¢ ., K13 = -sing¢ . K23 =0 . (57)
Finally, from (34a-c) we have
D = cos¢ , D' = -sing¢g , D" =0 . (58)

The result D"=0 indicates that G and H specialized for w and ¢ make only the
main solution and the alternate solution of the system (33) feasible. but not a

third kind of solution.
From (57) and (58) we observe that

K12 + D=0, K13 - D' =0, K23 + D" =0 . (59)

Thus, equaticas (54a-f) yield

R(1.,2.1.2) = R(1,3.1.3,) = R(2,3.2.3)

= R(1.3,1,2}) = R(2,3,1,2) = R(2,3.1.3) =0

Upon employing the temporary coordinate system introduced below (47f). in which

A - (1.0.0) . ¢ = (0.1.0) . vT = (0.0.1)
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the above values of R(i,j,m,n) become R Accordingly, we have

ijmn’

Riz12 = R1313 = Razas = Rygio = Razge = Ragya = 0 - (60)

If the quantities in (60) represent six independent components of the covariant
R-tensor. this tensor must be zero. Conversely, if all components of the

covariant R-tensor are zero as a consequence of (60), the six components shown
in (60) are independent. Due to the skew-symmetric properties of the covariant

R-tensor, namely R, and R -R , if the same index appears more

=-R = .
ijmn ijnm ijmn jimn
than twice, the component is automatically zero. Thus, only the following

permutations of indices could potentially result in nonzero components:
1212, 1213, 1223; 1312, 1313, 1323; 2312, 2313, 2323; (61)

plus nine permutations (three in each group) with the last two indices
interchanged, which only affects the sign; plus 18 permutations (six in each
newly expanded group) with the first two indices interchanged, which again only

affects the sign.

The above description reveals that if the nine permutations of indices in
(61) result in zero components, all components must be zero. This is, indeed,
the case here because for every permutation in (61) the corresponding component
of the covariant R-tensor is forced to zero by one of the conditions in (60).
Accordingly. this tensor must be zero. The components of the covariant R-tensor
are not some general functions of w and ¢ as one might expect from (54a-f),

which would then happen to be zero at P, but, rather,

Rijmn = constant = 0 . (62)

This 1is a direct consequence of the values in (59), which are identically zero
regardless of w and ¢. The present argument could be repeated in conjunction
with any N-surface; thus, (62) is valid regardless of w, ¢, and N, i.e., it is
valid for any location. Since Rjjmn is identically zero in one coordinate
system, the same is true in other systems. The tensor equation (62), which is
our previous equation (8), reveals that the space must be flat. As a
consequence, all orders of covariant derivatives of Ar' Br' and Cr are zero, all
Christoffel symbols in {xr} and all orders of their partial derivatives are
zero, the locally Cartesian system at P is globally Cartesian, etc., as can be

gathered from Appendix A.
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5.2 Leg Derivatives

Leg derivatives and other quantities in Hotine's system can be formed upon
substituting (55)-(57) and (62) into the appropriate relations. For example,

the initial formulas (11a-c), specialized here as

Ars = (sing He - cos¢ Ur)ws
#rs = -sing¢ lr ws - v ¢S .
Vrs = Ccos¢ lr o, * ur ¢s .

are ldentical to equations (12.014-016) in [H]. As another example, the main

solution provides the leg derivatives of o and ¢ via (35) and (36). namely

@5 -kl/cos¢ . 0, = ~t1/cos¢ . 0,4 = Tl/cos¢ . (63a)

%0 % "4 $r2 = TR o %3 = T2 (63b)
implying that

o, = (-klls - tlus + 7lvs)/eos¢ . (63a‘')

¢s = _tlxs - kzus R (63b’)

In the same way, the alternate solution yields via (48):

® = (alxs + 0

s + e3us)/sjn¢ : (63a")

2ﬂs

the alternate formula for ¢s is identical to (63b').

The above formulas (63a',b') are Hotlne's equations (12.046,047). However,
here they are obtained at an early stage., immediately following lrs' Hes' Vrg®
whereas in [H]} the gradients o and ¢S can be expressed only after individual

components of ir. ur. £

. and Rr' Hoo V. have been found. We also comment that
the alternate formula (63a"”) does not have an equivalent in {H]. On the other
hand, (63a'.b') and (63a") follow respectively from equations (A.4.5) and (8) in
[Z). The relations in our equation (37) express the curvatures g, 02. and &,
in terms of the five curvature parameters; here they have the form

o, = —kltan¢ . o, = ~t . tan¢ . I3

] 2 1 tang . (64)

3~
Of these formulas, the first two correspond to (12.066,067) in [H]. but the

third is again without an equivalent there; however, it appears in [Z] as one of
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the equations in (9). We finally remark that we are henceforth entitled to use

the relation

valid in the flat space, where K is the Gaussian curvature (see also equations
D.17a-c in Appendix D}.

The leg derivatives of curvatures in terms of the five curvature parameters
can be readily transcribed from (42a-i) upon using the specializations (55)-(57)
as above., and upon substituting zero for all of R(i.j.m.n) according to (62).

The specialized formulas read

2 2
k1/2 - tl/l = (K~k1-tl)tan¢ . (65a)
k + 7 = k2 + t2 + 72 - (k,7.,-2t_7r.)tang (65b)
1/3 1/1 1 1 1 1°2 1°1 )
tiyg * Ty = 2 = 1yr, - Uk =k )y + 8 7, ] tang (65¢)
k2/1 - t1/2 = 2Htltan¢ . (65d)
t1/3 + 72/1 = 2Ht1 + 7172 + kzrltan¢ , (65¢e)
2 2 2
k2/3 + 72/2 = k2 + tl t T, - tlrltan¢ . (65f)
2 .2 2
91/ = %1 = K + (k1+t1)tan ¢ . (65¢)
& -0 =k, 7. - t.r. + (k2+t2+72)tan¢ + t.r tan2¢ (65h)
3/1 1/3 1°2 1°1 1 1 1 11 )
2
53/2 - 02/3 = -kzr1 + tlrz + (2Ht1+7172)tan¢ - klrltan ¢ . (651)

In analogy to the comment made in the paragraph below (32'), the relations (65a)
and (65d) correspond to Hotine's equations (8.23), the Mainardi-Codazzi
equations, expressed now in terms of the five curvature parameters. The other

relations in (65a-i) do not have equivalents in [H].

However, as a matter of verification, the formulas (65a-f) correspond
respectively to the initial formulas for (wI). (wII). (wIII)' (¢I). (¢II). and
(¢III) appearing in the section "Hotine's Assertion” in [Z}. where they are
credited to Hotine (an unpublished report to the I.A.G. Toronto Assembly, 1957).
And the formulas (65g-i) are equivalent to the version of (w}), (w?l). and
(w;II) appearing below equation (10) in (Z], provided these quantities are

combined with equation (9), [ibid.]. Since In {Z]) and [H]. as well as in

w
0




Hotine's unpublished report, the space is assumed to be flat from the outset,

this agreement cross-validates the consistency of the pertinent derivations.

To obtain the differences of the double leg derivatives of « from the main

solution, we specialize (41a-c):

172 7 Y21 T (kl/g - tl/l - Ktan¢)/cos¢ , (66a)
©s3/1 " Yya T Kyt Tyt kT, ot T ) tang)/cosg (66b)
“sa/3 " Yrase = T Wtyya T Ty v (4T KT ) tanél/cosg (66c)

In recalling the comment below (41c), we form analogous relations for ¢:

%172~ %21 = %21 7 tyge (66d)
®a71 " %137 Y1z Y T2 (66e)
%2/3 = %372 = K23 " 272 - (66f)

In turning to the alternate solution, from (51a-c) one has

w/l/z - w/2/1 = (01/2 = 02/1 - K)/sin¢ , (66a')
“sa/1 7 Y173 = By T %3 T KT P Yy Ty)/sine (66b")
©sas3 " Yasa = " (Bgp T 9py3 * KTy T Yy Tp)/sing (66c')

With regard to ¢, the alternate solution gives an outcome identical to (66d-f).
The differences of the double leg derivatives in (66a-f) and (66a'-c') do not
have equivalents in [H]) or (Z].

The differences of the double leg derivatives can be presented entirely in
terms of the five curvature parameters. We first consider (66a-f), where we

make appropriate substitutions from (65a-f). This results in

22
© /2 " @y = (K] + t])tang/cosé . (67a)
w - w = (k2 s 12, Tz + t, 7 tang¢)/cos¢ (67b)
/3/1 = “/1/3 14N 1" T '
a3 " Yasp = - (BHt  + T 7, - k 7 tang)/cosé (67c)
®/1/2 = ®,5,4 = 2Mt tans (67d)
6,371 ~ 81,3 = eHY  + 1,7, + K 7 tang . (67e)
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br2r8 = Prasp = - (K * t] Ty - tyT tane) . (67f)
However, if we similarly make substitutions from (65g-i) into (66a'-c'). we
recover the formulas (67a-c). Thus, equations (67a-f) uniquely express the
differences of the double leg derivatives of Hotine's coordinates w and ¢ in

terms of the five curvature parameters. These formulas do not have equivalents
in {H] or [Z].

5.3 Laplacians of w and ¢

In differentiating the basic gradient equation (9) covariantly and
contracting (on both indices) with the associated metric tensor, we obtain AN,

the Laplacian of N:

s rs
AN = n v + ng v
S rs

The first term on the right-hand side is N4 while grsurs in the second term is

-2H according to Hotine's formula (7.19). It thus follows that

n/3 = AN + 2Hn = AN + (k1+k2)n . {68)

which is a standard result equivalent to Hotine's equation (12.100). Although
this result is valid in a general space., here it is used for the flat space.

Before expressing the Laplacians for o and ¢ via equation (30), we need to

formulate the invariants vrstlrgSt and ursturgSt. specialized for the flat
space.
In the flat space. we have Nrststtr:"“ where any permutation of indices
is permissible. 1[It then follows that
_ st _ st _ st

(AN)r =g Ry "8 Nrst - g (nstur+nsurt+nturs+nurst)
and., due to the symmetry of gSt. that

st _ _ _ st

g Vgt T [(AN)r Anur 2g nsurt]/n . (69)

If we contract (69) with Xr and utilize (19b). we obtain

r st _ _
rst? & = [AN) o+ 20k +tin -y n )]/

4C




The definitions of T, and T, in (32') supply N, and n,,. while (68) supplies

n Thus, the above equation leads to

/3"

r <t

VrstA g = 2(t172—k2;1—71Ah;n; f(l/n)(An;/l . (70a)

If we contract (69) with ur and utilize (19c), a similar procedure yields

r st _ _ B
Urstu g = 2(t171 klr2 72AN/n) + (l/n)(AN)/2 . (70b)
To develop the Laplacian for o, we first specialize (30):
Aw = w/l/1 + w/2/2 + w/3/3 - (7'1—<72)w/1 - (72+01)w/2 -~ 2Hw/3 . (71)
In recalling (63a), we form
©/q " (kltltan¢—k1/l)/cos¢ . @000 = (ketltan¢—t1/2)/cos¢ .
w/3/3 = (7172t3n¢+T1/3)/008¢ . {(72)

where use has been made of (63b) as well. To determine —kl/l' we adopt k1 from
the second alternative in (14a). perform the first-leg differentiation, and use
the first formulas in (18a.c) together with (19b). This results in

_ r.s,t
kl/l = Urstx AR 2t101 + lel . (73a)

Similarly, we adop: tl from the second alternative in (15), perform the second-

leg differentiation, and use the second formulas in (18a,b,c) together with

(19b). This yields

. Xrusut -k

“t/2 T Vrst v ko, F Koy, (73b)

2%2
Finally, we adopt r] from the second alternative in (16a). perform the third-leg
differentiation, and use the third formulas in (18a,c) together with (19b),

which gives

r s t
7173 = urstj vou o+ 7262 klrl - tlrz . (73c)

If we substitute (73a-c) into (72), and substitute the new relations into

(71), where also (63a) is to be used, we obtain an intermediate result

Aw = {v RrgSt - t.,o, - k,o

rst 171 295 T 7,6

3 * (2Ht1+7172)tan¢]/cos¢ :

here advantage has been taken of the leg formulation of the associated metric

tensor as seen prior to (29). From (64) it follows that the second. third, and
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fourth terms Inside the brackets above form (2Ht1+7172)tan¢. This new term,
together with the expression (70a) substituted for the first term inside the

brackevs, transforis ti.. Intermedizte result into
Aw = [—2(k2rl-t1r2+rlAN/n) + 2(2Ht1+7172)tan¢ + (l/n)(AN)/I]/cos¢ . (74)
This Laplacian agrees with (12.104) of [H].

In the last step, (30) is specialized for ¢ to read

80 = ,1/1 * ®ras2 t Oy3s3 T (1170508, - (1pro) e, - 2He . (T5)
From (63b), the double leg derivatives readily follow as

¢ = k

/1 ° "t $r2/2 = Koy ¢,3/3 = Ta/3 - (76)

We adopt t, from the fourth alternative of (15)., perform the first-leg

1
differentiation, and use the first formulas in (18a,b,c) together with (19c);
this yields

_ r.,s,t _
tl/l = VpgtH A2 + k.o ko, + klr

1%1 2%1 (77a)

2
Next, we adopt k2 from the second alternative in (14b), perform the second-leg

differentiation, and use the second formulas in (18b,c) together with (19c),

which gives
_ r st
“Kaya T VpgeH BH T 240, Y KT, (77b)

Finally, we adopt Ty from the second alternative in (16b), perform the third-leg
differentiation, and use the third formulas in (18b,c) together with (19c),

which results in

_ rst _ B
Tasz = Vpsth V¥ T T 85 T U1y m Kar, (77c)
The substitution of (77a-c) and (63b) into (75) yields
A= v gt v ko, v to. - 1.
rst” € 1% 1% 7~ 1143
A subsequent substitution by (70b) and (64) gives the Laplacian as
8p = -2(K 7,-t. 7. +7,8N/n) - (K2 +t2+78) tang + (1/n) (AN) (78)
172 11 2 1 1 1 /2"

which agrees with (12.105) of [H].

42




6. SUMMARY AND CONCLUSION

T> discuss the velidity cof Hetine's ceoeordinates @ and é  the latter have
been treated in a generalized form G and H in a general Riemannian space. The
conditions of symmetry of the second covariant derivatives of G and H result in
six commutators containing the single and the double leg derivatives, i.e., the
directional derivatives along the 3-leg A, u, v, of G and H (see equations 28a-c
applied to both G and H). The formulation of the commutators entails the task
of expressing pairwise combinations (sums or differences) of the leg derivatives
of eight curvatures, which brings forth the covariant Riemann-Christoffel
tensor, called here the covariant R-tensor, contracted with certain permutations
of contravariant leg vectors (see equations 31a-i). With the aid of G and H,
combinations of the leg derivatives can also be expressed in terms of the five

curvature parameters kl' k t,. 71, and T, (see equations 42a-i). 1In either

2" 1
formulation, the combinations of the leg derivatives feature the contracted

covariant R-tensor, and are valid in a general space.

Accordingly, also the six commutators feature the contracted covariant R-
tensor and the five curvature parameters. In addition, the commutators feature
some quite general functions of G and H, which uniquely relate the 3-leg to the
Cartesian axes A, B, C of a locally Cartesian coordinate system {xr} at the
point P. From the definition of {xr}. it holds true. in the flat space as well

as in curved spaces, that

A =B =2¢C =0
rs rs rs

These tensor equations apply at P, as do all the other relations in this study:
the only exceptions occur when a tensor, such as the metric tensor, is expanded

in the Taylor series from P to arbitrary locations.

If the characteristics of the space, and thereby the components of the
covariant R-tensor, are known., the commutators represent conditions on the
above-mentioned general functions of G and H. On the other hand, if such
functions are known or chosen. the commutators represent conditions on the
covariant R-tensor and thereby on the space. The latter possibility forms the
backbone of the present analysis. In essence, it enables one to choose the
coordinates, and to require that the space conform to this choice. Since the

covariant R-tensor has six independent components, six distinct contractions
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must be constrained by the commutators in order to make a complete resolution of
this tensor feasible. Upon relating the partial derivatives of G and H (with
recpect to lhe couruinaies {Ar}) 15 the curvoture rargmeteors in one of three
possible systems of linear equations, only five independent contractions are
obtained, the sixth being repetitious. Another system must then be resolved,
supplying the sixth independent co~straint. The general analysis in terms of G
and H culminates in equations (54a-f), which are equivalent to a linearly
independent system of six G- and H-commutators featuring the five curvature
parameters, capable of resolving the six independent components cf ihe covariant

R-tensor.

The resolution of six independent components, and thereby of all
components, of the covariant R-tensoer can be readily accomplished in a temporary
coordinate system adopted as locally Cartesian along the 3 leg (belonging to P).
The resuils can then be transformed to any other coordinate system. 1In general,
the components of the covariant R-tensor at points on a given N-surface may be
some functions of G and H, which, at P, could turn out to have the zero values.
The curvature tensor would then be zero not only in the temporary coordinate

system but in any other system, such as {xr}. This would entail

Arst = Brst = Crst =0. (79)

implying that the local system {xr) is Cartesian to at least a second order.

Equivalently, the relation
k = k (79')

would hold true for a general vector k belonging to P. However, if the partial
derivatives (with respect to (xr} as usual) of the covariant R-tensor departed

from zero, it would follow that Ars u#O. etc.. and the local system would be

t
Cartesian only to a second order. Based on the components of the covariant
R-tensor and on the components' various partial derivatives at P, one could
construct, via the Taylor-series expansion, the metric tensor in (xr) for

arbitrary polints, and thereby concretely express the space.

If six independent components of the covariant R-tensor are identically

zera (regardless of G, H and N}, i.e., if

Rijmn = constant = 0 (80)
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holds true for these components and thus for any components of the covariant R-

tensor, then the following relations are valid:

Arst - Brst = Crst =V, Arstu - Brstu N Crstu =0 ... (81)

where the dots represent all the other sets of covariant derivatives.
Equivalently, one can state that the local system is globally Cartesian (or
Cartesian to any order), which, in turn, implies that the space must be flat.
The solution (80) characterizes the specialization of G and H to Hotine's
coordinates o and ¢. That is to say, if one chooses w and ¢ as the first two
coordinates and examincs what kind of space this choice entails, the answer is
that the only admissible space is the flat space. In any other space, equation
(80) would not hold true, and w, ¢ would be inadmissible as coordinates even in

a small neighborhood of the point P.

In view of the above, the answer to the question posed in the Introduction
is that o and ¢ may cxist as coordinates only in the flat space. Thus, the
outcome of the feasibility study concerned with the admissibility of the (w.¢.N)
coordinate system in a curved space is negative. The flatness of the space is
reflected in that all orders of covariant derivatives of Ar' Br’ Cr are zerc
Not only must (79) hold true, as well as all it implicitly entails, but the
additional relations in (81) must also hold true, as well as all they entail.
There is no need to enforce the flatness separately via conditions of the kind
(79'), which are now satisfied as a by-product. The Mainardi-Codazzi equations,
for example, would represent even a weaker condition than (79') because they
correspond to the specialization v =y

rst rts’
then regarded merely as identities in the flat space, where, however, they may

These and other such equations are

be of great value in their own right. 1In conclusion, the admissibility of
Hotine's (w,¢.,N) coordinate system has been restricted to the flat space (or its
regions). In the process. a number of equations from [Z]. applicable to the
flat space, have been cross-validated by independent means, and several new

relations have been presented that do not have equivalentc in [H] or [Z].
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APPENDIX A

LGLALLY CaKTESIAN COORDINATE SYSTEM

A.1 Metric Tensor

We consider a general Riemannian space (flat or curved), where, at a given
point P, we establish a locally Cartesian coordinate system as discussed in §5-6
of [Hotine, 1969]. This system, denoted {xr}. r=1,2,3, has the property that
the Christoffel symbols (the C-symbols) at P are zero for any indices i, j, k:

r;k -0 . (A.1)

When written in a matrix form characterized by brackets, at P the metric tensor

. ; rs
grs and the associated metric tensor g are

I‘S]

[grsl = (g =1 . (A.2)

The components of an orthonormal triad A, B, and C ifdentifying the coordinate

lines at P are given by

AL = AT = (1,0.0) , B - BY = (0.1.0) . c, - c’ = (0.0.1) . (A.3)

Since € is constant under the covariant differentiation, it follows that

P R | i
agr‘s/ax - Frtgis ¥ Fstg

ri
2 t. k
from which the ordinary partial derivatives yleld 3d grs/ax ax .

3 k

a grs/axtax axu. etc.

Due to (A.1), for P we deduce

t

agrs/ax =0 , (A.4a)
2 t. .k _ s r k

3 grs/ax ax -—E)(I‘rt +I;t)/ax . (A.4b)
3 t, k. u 2,..8 r k. u

3 grs/ax ax dx = 3 (Frt + Pst)/ax ox (A.4c)

etc., where we have also utilized (A.2). as well as (A.4a) in the subsequent
expressions. An n-th order (n>3) partial derivative of €L comprises an
(n-1)-th order partial derivative of the C-symbols in parentheses above, plus
terms containing products of (n-3)-th, (n-4)-th, etc., down to the first-order

partial derivatives of the C-symbols; there are no (n-2)-th order partial
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derivatives of these symbols present. We are now in a position to formulate the

metric tensor g;s at a point P', where the coordinate differences from P are

t .
Ax , by means of the Taylor series:

¢ - S r k t, k
Brg = Bpg * (1/2)[8(Frt + Fst)/ax JAx " Ax
k

k

s “/6”82“‘31 - 1L ) /ax ax1axtax®axt + ... (A.5)

This Is not a tensor equation, but a relation expressing individual components
of the metric tensor at P' from individual components of this tensor at P. As
in other cases, the former can be computed from the latter via the Taylor
series. One readily ascertains that such an expansion cannot produce a tensor
equation. At the outset, g;s on the left-hand side of (A.5) is associated
with P', whereas grs on the right-hand side is associated with P: in a tensor
equation all quantities would be assoclated with the same point. Furthermore,

the terms beyond the first on the right-hand side are not tensors at all.

If the expression inside the first brackets of (A.5} is nonzero, the system
(xr} is Cartesian to a first order. and as such, is confined to P and its
immediate neighborhood. If this expression is zero but the expression inside
the next brackets is nonzero, the system is Cartesian to a second order. etc.
If all orders of partial derivatives of the C-symbols are zero at P, we have
gés=grs (equality for components, not a tensor equation) for any point P'. and
the system is globally Cartesian. Clearly, the converse is also true; in a
system that is Cartesian throughout the space, the metric tensor (A.2) is
constant everywhere, making the C-symbols and all of their partial derivatives

identically zero.

A.2 Riemann-Christoffel Tensors

We now turn our attention to the Riemann-Christoffel tensor and its
covariant version, which we call respectively the R-tensor and the covariant R-

tensor. The former is derived in §5-3 of [Hotine. 1969], and is presented as

u u u k m _u u

4
R - art sax? - arY sax ™Y - "

A.6
19k ik i ] ik'mj ~ TigTmk (4.6)
Due to (A.1), in the system {xr) at P we have
u j u k u
= A7
arik/ax arjj/ax + RJJk . ( )
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The R-tensor is linked to the covarliant R-tensor by

u um
Rjjk =€ R

mijk

At the point P, all components of the two tensors are equal in the system (xr}
because of (A.2). Except for possible sign differences, due to its symmetric
and skew-symmetric properties the covariant R-tensor has only six distinct
components {(in three dimensions). This fact is exploited in the body of the

present study.

To relate the partial derivatives of the two kinds of the R-tensors in

analogy to (A.4a-c) we first deduce the partial derivatives of grs at P:

ag"™/ax" = 0 . (A.8a)
2 rs [ r s k

3%g S /ax ax" = —a(ry - 13 )/ax" (A.8b)
23S /axtaxXax - —azrris . rir)/axkax” . (A.8c)

etc. Although the right-hand sides of (A.8b,c) are equal to the negative of the
right-hand sides of (A.4b.c). such a relationship does not exist beyond the
third-order partial derivatives. However, the pattern for the n-th order
partial derivatives is the same as that described following (A.4c). Numerical
values of Individual components of the two R-tensors and their partial

derivatives are related here by

u
R.ljk = Ruijk (A.9a)
u t t
aR.IJk/ax = aRujjk/ax . (A.9b)
2.,u t..p - 2 t..p _ Ay m p
3 R.ijk/ax 3 x ] Rujjk/ax ax Rmijkb(rtm + Ptu)/ax . (A.9c)
etc., where (A.8b) has been utilized In (A.9c). (In the latter, the summation
convention for the index m applies regardless of its position.) An n-th order

(n>1) partial derivative of Rui can be shown to comprise an n-th order

Jk

partial derivative of Ru' plus terms containing products of (n-2)-th,

(n-3)-th, etc., down to Bﬂlh order partial derivatives of the covariant R-tensor
with the first-, second-. etc.. up to (n-1)-th order partial derivatives of the
C-symbols. The pattern shows a certalin symmetry. For example, if n=4. these
terms comprise products of second-order partial derivatives (or 2-derivatives)

of the covariant R-tensor with t-derivatives of thec C-symbols, 1-derivatives of




the covariant R-tensor with 2-derivatives of the C-symbols, and O-derivatives of
the covariant R-tensor (i.e.. the tensor itself) with 3-derivatives of the C-
symbols. The (0ove equations, as all equatioas in this appendix with the

exception of (A.5), apply in the locally Cartesian system {xr} at P.

If all components of the covariant R-tensor are zero, i.e., |If

Ruijk = @ - (A.10)

so are the components of the R-tensor (see the formula below equation A.7).
Although this is true in all coordinate systems. we utilize it only for {xr}.

Equation (A.7) indicates that in such a case it is permissible to adopt
u
ari /9x” = 0 , (A.11)

where the indices u, i, k, and j are unrestricted. From (A.5) we observe that
the local system is now Cartesian to at least a second order. The strategy of
adopting a choice of the kind (A.11) stems from the fact that if all orders of
partial derivatives of the C-symbols are admissible to be zero., then the systenm

{xr} is admissible to be globally Cartesian and the space must be flat.

On the other hand, if (A.10) is not valid for all components, neither is
(A.11), and the system is Cartesian only to a first order. We can build the
metric iensor g;s in (A.5) by computing the values of the partial derivatives
of the C-symbols. In this process, we conveniently set to zero thnse values
that are not constrained otherwise. In particular, due to the properties of the
two R-tensors, all components of these tensors in (A.9a) are zero if j=k and/or

u=1i. Accordingly, (A.7) allows us to set

u _ i I
aPik/ax = 0 , arjk/ax =0 , (A.12)

where the indices are unrestricted (here the repeating indices do not entail the

summation convention). As an alternative. one could keep the first equation in

(A.12) intact but, instead of the second equation, adopt arij/axi=o. This
would yield arik;/axj=leji as opposed to the second equation in (A.12). Upon

using (A.12) and the symmetry property of the C-symbols. the remaining elements

of these symbols at P can be found from (A.7) and then utilized in (A.5).

To express higher-order derivatives of the C-symbols with respect to the

coordinates (xr}. we differentiate (A.6) and specialize it for P:
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k t

2.u Ja .t .2u t u
a Pik/ax ax =43 Fij/ax 3x + aR'ij/ax . (A.13)

In working systematically with the covariant R-tensor, we can replace the second
term on the right-hand side by its equivalent from (A.9b). In paralleling
(A.10-11), we then state that if it holds true for all elements that

t
aRuijk/ax =0, (A.14)

it is admissible to adopt

a?r¥ saxdax' - 0 . (A.15)
ik
where the indices are unrestricted. This expression can then be substituted
into (A.5). It follows that if both (A.10) and (A.14) are valid, the system
{xr} is Cartesian to at least a third order. On the other hand, even when
(A.14) does not apply, it is still true that aReijk/axt=0 if j=k and/or u=i.
According to (A.13), in this case it is admissible to set

2.1 2

3 Pik/axkaxt -0 . 3 r; Jaxdaxt = 0 . (A.16)

k

which is in a close analogy to (A.12). The remaining elements of the doubly
differentiated C-symbols can be found from (A.13) and utilized in (A.5).

In differentiating (A.6) twice and specializing it for P, one has

kaxtaxp + azRu /axtaxp

.ijk
P, _ m p u
/8x") (ank/ax )(aI‘m

a3rY saxdaxtaxP = a3rY /oax
ik 1)

(ar?k/axt)(ar: Jaxt)

J
t u p m
+(arTj/ax yary, /axP) + (ary

3

p u t
J/ax )(armk/ax ) . (A.17)

An n-th order (n>2) partial derivative of the C-symbol can be shown to contain
another n-th order partial derivative of the C-symbol, an (n-1)-th order partial
derivative of the R-tensor, plus terms containing products of (n-2)-th,
{n-3)-th. etc., down to the first-order partial derivatives of the C-symbols in
a somewhat symmetric manner. For example, if n=5, the latter terms contain
products of 3-derivatives with 1-derivatives. and of 2-derivatives with

2-derivatives (of the C-symbols).

Working again (n>2) in terms of the covariant R-tensor and considering, for
example, n=3 and thus (A.17), we can replace the second term on the right-hand
side by its equivalent from (A.9c) involving compatible products of the C-symbol

derivatives. If, in addition to (A.10) making (A.11) admissible, we also have
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u

2 t..p _
d R.ijk/ax ax =0 , (A.18)

it is further admissible to set

33rY saxdaxtaxP = o

1k
which we can then substitute into (A.5). Consequently, if all of (A.10),
(A.14), and (A.18) are valid. the system {xr) is Cartesian to at least a fourth
order as can be confirmed upon consulting the last paragraph of Section A.1.
If (A.18) does not apply., the consideration of j=k and/or u=i can be used for
choices analogous to (A.16), but only if the first-order partial derivatives of
the C-symbols presented in (A.17) are zero. However, such a restriction does
not curtail the possibility to compute the third-order partial derivatives of
the C-symbols. When compared with the cases where n<3, the present procedure
may simply have to resort to {(A.17) for additional elements for which the zero
values would produce a conflict. After the triply differentiated C-symbols have
been formed, they can be utilized in (A.5) in accordance with the description
below (A.4c).

The foregoing contains all the information necessary to proceed to any
order of partial derivatives of the C-symbols, and to include any number of
terms in the Taylor-series expansion of the metric tensor in (A.5). The entire
development is based on the covariant R-tensor. If it holds true for all of its

elements (or, equivalently, for its six independent elements) that

Ruijk = constant = 0 , (A.19)

i.e., that all of (A.10)., (A.14), (A.18), etc., at the point P apply, then all
orders of partial derivatives of the C-symbols at P are admissible to be zero,
the system (xr} 1s admissible to be globally Cartesian, and the space must be

flat. (Consisteﬁt with this statement, equation A.5 yields [grs]Econstant=I.)

It is readily apparent that the converse is also true. Equation (A.19) and its

consequences just stated are crucial elements in the present study.

As a parenthetical note. we state that the zero value of the covariant R-
tensor at P, as well as the zero values of all its spatial derivatives there,
are equivalent to this tensor being zero at all points of the space. Clearly,
if the covariant R-tensor and all its spatial derivatives are zero at P, then
this tensor is zero at any point of the space, as per its Taylor-series

expansion from P. The converse is also true. For. suppose that the covariant




R-tensor is zero at P as well as at every point of the space, and that the
(zero) value of this tensor at cvery point is expressed in the Taylor series
around the (zero) value at P. Due to the independence of the individual terms
of the series, and to the series being identically zero, the linear term for any
point must be zero, the quadratic term for any point must be zero, etc. But
since the linear term equals the partial derivative on the left-hand side of
(A.14) contracted with Axt, and this term must be zero for every Axt. it follows
that the first-order partial derivative in (A.14) must be zero. A similar

outcome is noted for the (symmetric) partial derivatives of higher orders.

In returning to (A.19), we state that if this equation does not apply. the
system (xr) is Cartesian to a certain order. As has been demonstrated. if, at
P, the partial derivatives of the covariant R-tensor are zero up to and
including the n-th order (n=0 corresponds to the original tensor), but not
beyond this order, the system is Cartesian to an (n+2)-th order. We have means
at our disposal to express the metric tensor in {xr} at an arbitrary point P'.
In particular, in using the values of the covariant R-tensor and its partial
derivatives at P, we can form the R-tensor and its partial derivatives at P.
This, in turn, leads to an evaluation of the partial derivatives of the C-
symbols at P (where the symbols themselves are zero), and, with the aid of the
Taylor-series expansion, to an evaluation of the metric tensor at arbitrary
locations. We have thus developed concrete means by which to describe the

space, based on the locally Cartesian coordinate system {xr} at the point P.

A.3 Cartesian Triad

In Section A.1, we have presented the orthonormal triad A, B, C at the
point P, oriented along the coordinates lines of the locally Cartesian
coordinate system (xr}. The components of the Cartesian triad have been listed

in (A.3). The covariant differentiation of Ar yields

A =23A /3x> -r' a,
rs r rs i

which, by virtue of the definlition of Ar in (A.3) and of the systenm {xr). is
zero. A similar outcome is reached for Brs and Crs' so that we have
A = B = C =0 . (A.20)

rs rs rs

52




This is a tensor equation at P, valid in any coordinates. Here it will be used
only in the coordinate system {xr}. Equation (A.20) has nothing to do with the
curvature of the space, which does not affect the first covariant derivatives of

vectors (and the second covariant derivatives of scalars).

If we differentiate Ars’ Brs' and er covariantly in {xr), at P we have

_ 1 t L2 t R t
Alst = arrs/ax , Brst = arrs/ax , Crst = arrs/ax , (A.21)
which shows that A ., B , and C are symmetric in the first two indiccs.
r rst rst rst

If the system {x } is Cartesian to at least a second order. i.e., if

ar’ saxt =0 | (A.22)

rs

where the indices are unrestricted, it follows that

A = B = C = 0 . (A.23)

Conversely, if (A.23) holds true, then (A.21) is equivalent to (A.22) and the
system is Cartesian to at least a second order. We note that (A.23) appears as

{2) in the body of the present study.

In employing the covariant R-tensor, we can make a useful deduction related

to (A.23). We begin by assuming the following tensor equations, considered at P

in the coordinate system {xr}:

A = A ' B = B , C = C . (A.24)

rst rts rst? RurstA .rst erst -

which holds true for unrestricted r, s, and t. The same argument repeated for B

and C shows that

R, =0, (A.25)
irst

where also 1 Is unrestricted. 1In recalling the path from (A.10) to (A.11)., we
deduce that (A.22) is admissible. But this outcome has already resulted above
in (A.23), a tensor equation valid in any coordinates. We have thus established

that in spite of (A.24) appearing weaker than (A.23), the two equations are

equivalent.

N
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The systenm {xr} would be Cartesian to at least a third order if it also
held true that

azris/axtaxp -0 . (A.26)

In differentiating covariantly Ar' Br' and Cr three times in succession and

conslidering the results to apply at P as usual, we have

A - -a°r! saxtaxy . B - -3%r% saxtaxt .
rstu rs rstu rs
c - -3%r° saxtaxt .
rstu rs

where only the definition of {xr}. implying (A.1) and (A.20), has been used.

Equation (A.26) is thus seen to be equivalent to

- = = .27
Arstu = Brstu = Crstu © 0 - (A.27)

which is listed, in a similar context, as equation (3).

An n-th order (n>3) covariant derivative of Ar comprises the minus
(n~1)-th order partial derivative of Pis. plus terms containing products of
(n~3)-th, (n-4)-th, etc., down to the first-order partial derivatives of the
C-symbols. Thus, as (A.5}) indicates, If the system is Cartesjian to an n-th
order, it entails a relation similar to (A.27) but corresponding to an n-fold
covariant differentiation. Conversely. if such a relation, as well as relations
of this kind expressing all of the lower orders of covariant differentiation,
hold true. then the system is Cartesian to an n-th order. In summary, if k is
the highest order of covariant differentiation that has not yet breached the
validity of a relation of the type (A.27), then all orders in the range 1
through k-1 of partial derivatives of the C-symbols produce zeros as admjssible

results, and the system (xr} is Cartesian to a k-th order.

To justify the statement of equivalence made in the Introduction in
conjunction with equations (2) and (4), we consider an arbitrary vector k at the

point P, and perform

u u
Krst ™ Kres = Roprseku ™ Rupst®

The vector k can be expressed by means of A, B, and C as

u

kY = aa" + bBY + ccY

which, when substituted in the above equation, yields
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- k = aR

krst rts Irst * bRert * CR3rst ' (A.28)

where a, b, and c are arbitrary scalar invariants (including arbitrary
constants). If {xr} is Cartesian to at least a second order so that (A.25)

applies, it follows that

krst - krts ) (A.29)

Conversely, if (A.29) holds true, then, due to the arbitrariness of a, b, and c,
equation (A.28) yields (A.25) and thereby also (A.23). We remark that although

(A.29) implies that the covariant R-tensor is zero at P, it has no connection to
the partial derivatives of this tensor. The above represents one approach to

establishing the equivalence of the tensor equations (A.29) and (A.23).
We can also begin with the tensor equation

kr = aA_ + bB_ + ¢cC_ ,

a

differentiate it covariantly twice, interchange the second and the third
indices, and form

k - k = al(A - A )+ Db(B
r s r

rst rts st rt - Brts) + C(Cr - C ) . (A.30)

st st rts

This result would have been obtained even without taking advantage of (A.20),
and regardless of whether a, b, and ¢ are arbitrary scalar invariants (functions
of position) or arbitrary constants; in either case we have A =8 bst=bts'

cst=c S (in the latter case these equations would become the identities 0=0).

If wet;ake the substitution seen below (A.24) with respect to A, and similarly
with respect to B and C, we recover (A.28). However, in working directly with
(A.30), we observe that if {xr} is Cartesian to at least a second order,
equation (A.29) follows. Conversely, if (A.29) holds true, equation (A.30)
indicates that (A.24) and thereby (A.23}) must be true as well because of the

arbitrariness of a, b, and c.

We have thus shown the equivalence of tensor equations (A.29) and (A.23).
In conclusion, (A.29) does not imply that the space is flat, only that the
system {xr} can be Cartesian to at least a second order. If (A.27) is not
satisfied, (xr) is Cartesian only to a second order. If it is satisfied. as
well as all the other relations of its type (for covariant differentiation of

any order). then {xr} can be globally Cartesian and the space must be flat.
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APPENDIX B
TAYLOR-SERIES EXPANSION OF METRIC TENSOR IN POLAR COORDINATES

In a general three-dimensional space, the metric tensor in the coordinates

symbolized by (xr}. r=1,2.3, can be expanded in the Taylor series as follows:

. [ 2 P..q q
€. = €, + (3. /3x")ax® + (1/2) (3% /oxPax yaxPax® + ... . (B.1)

Here grs is the metric tensor at a point P and gés is the metric tensor at a
point P'; further, Axrzx'r—xr. where xr symbolizes the coordinates of P and x'r
symbolizes the coordinates of P'. In accordance with §3-12 in (Hotine, 1969],

we have the tenccr equation

t

= p~ t - =

grs,p - agrs/ax Fxpgts Spgtr 0.

This yields
p _ Lt t

agrs/ax = Frpgts + Fspgtr . (B.2a)

from which it foliows that
2 P..49 _ t t q
a grs/ax ax a([‘rpgts + Fspgtr)/ax . e (B.2b)

The Taylor expansion is formalized by substituting (B.2a,b) into (B.1).

In a two-dimensional space, where the coordinate system is symbolized by

(ua}. a=1,2, the above outcome is rewritten as

(/] (/]
aB * (Parawﬁ * Fﬁrawa
w

Brawa

a ) Aul + (1/2)[a(rﬁ7a

38 " o
5

+ T )/aua]AurAu + .. (B.3)

If we now stipulate that the two-dimensional space is flat, i.e., a plane, and
define the coordinates as r (distance from the origin) and 8 (angle from a given

axis x), i.e., as polar coordinates, we have (ua}s(r.a) and
ds? = ar® + r?d6® . (B.4)

The metric (B.4) implies the following metric tensor (in matrix notation):
[a

03] = 2| - (B.5)
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Equation (B.5) can also be deduced via a transformation of coordinates
between the systems {Ga}z(x.y) and {ua)s(r,e). In particular, the

transformation formula

acT yan®y a8, By =
aaB = (du’'/3u }(3u /3du )375 .

if applied to overbarred coordinates as Cartesian x,y, yields
(a .1 = [auT/aut T (307 /adP)
aB
Since X=rcos@ and y=rsinf, we have

B o Xx/r -y
(au’/su) =
y/r X
: X ) 2 2 2
and (B.5) follows, for a given point, upon using X +y =r .
To express the Christoffel symbols (the C-symbols), we use the notational

convention of §3-1 in [Hotine, 1969]. Thus, we write

uo_ o ur :

Mg =’ las.7i (B.6)
where

[aB.7] = (1/2)(3a, /3u® + 3a__/3u® - aa__sau’) . (B.7)

Br ar af

Since a a“7=67. i.e.., [a__.] and [aaB] are inverses of each other, in
au a af

reference to (B.5) one has

1 0

(af7) = 2| (B.8)
0 1/r

Equation (B.7) in conjunction with (B.5) yields. upon arranging the entries

for @ and B in [aB, 7] Into a matrix for a given r:
{aB. 1] = , (aB.2] =

Similarly, for a given u, the C-symbols Fz are prescnted as




(In this paragraph we refrain from using brackets on the left-hand sides,

normally symbolizing matrix notation.) Since

0 0 0 r
w a = I‘w a =
al wf 0 r a2 wof r 0
and similarly for leawa {the interchange of a and B entails a transposition),
we have
" o 0 0 0 0
a + ' a = ... for vy =1, = ... for v = 2
ar @8 By wa 1, 50 0 0
Accordingly,
- -
w @ o 0 0
1/2)3(r _a + P, a /ou = for =8 =1,
( 1a( ar 208 8y wa) o ) T
[0 o]
= ... in the other three cases.
[0 0]

With the above development, (B.3) yields
(a'n1 = [a .1 + Ar + A8 + ar? + 0ArA6 + 0A8Ar + 046°
af af :

where the third- and higher-order terms are zero in this example. We then have

1 0 0 o0 0 0
[a&ﬁ] ) o r2 ' 0 2rAr ) 0 Ar2 . (8-9)
But this is
1 0
[aaB] = o 2| (B.9")
where
r' = r + Ar
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Thus, (B.9) corresponds to (B.9'), where r‘2 is developed via the Taylor-series

expansion as

r'2 = r2 + 2rAr + Ar2

The present simple example illustrates that individual components of a;B
may be developed via the Taylor series. The component results may be grouped
together in a convenient form, such as (B.3). From their construction, the
terms on the right-hand side of (B.3), except for the first, are not tensors but
expressions of a given order in coordinate differences. Clearly, the convenient
grouping of components that gives rise to such expressions cannot in itself
create tensors. However, the fact that (B.3) is not a tensor equation does not

detract from its usefulness.
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APPENDIX C
DETAILED DERIVATION OF EIGHT CURVATURES

The eight curvatures listed in Section 3.1 will now be derived in detail.
These curvatures consist of five curvature parameters kl. k2. tl. 71. and 72.
and three additional curvatures O+ Ope and 51; as stated in Section 3.1, they
correspond to the orthonormal triad A, u, v. In conjunction with a more general
orthonormal triad ¢, j, v, the eight curvatures are denoted, in the same order,
as k, k¥, t, ?1. ;2. g, 0%, and 53. Except for the three barred quantities
newly introduced, the notation is adopted from [Hotine, 1969], abbreviated as
[H}. Although some of the latter eight curvatures are derived in Chapter 7 of
[H] (see equations 7.04, 7.03, and 7.08 for o, k, and t, respectively), here we
begin with a complete development associated with the general triad ¢, j, v, and
subsequently transcribe the results for the triad A, g, v. This will help in

making the present study as self-contained as practicable.

C.1 Development Associated with the General Triad

The extrinsic properties of surface curves are developed upon considering
such curves in both the space and the surface context. At a given point P, the
unit tangent vector to a surface curve is denoted ¢, and the orthonormal surface
vector is denoted j. As in §7-1 of [H], ¢ and j are also considered to be unit
tangents to a family of surface curves and to a family of their orthogonal
trajectories, respectively. This interpretation allows us to differentiate Qa
or Ja (or other tensors defined along a line) covariantly with respect to
surface coordinates; subsequently, the application of such a differentiation can
be restricted to a particular line at a particular point. As is explained in
§4-1 of [H]., similar considerations regarding famfilies of lines are valid In

three dimensions.

With v denoting the unit normal to the surface at P, we define ¢, j, v as
a right-handed orthonormal triad. This triad is called "general”, since ¢ and j
are not restricted to follow any particular surface directions. The development

will not be affected by the curvature of the space because no double covariant
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differentiation (in space) will take place, and, therefore, the same formulas

will be obtained whether the space is flat or curved.

The present geometrical situation is depicted in Fig. 1 below, which is
essentially Fig. 6 in {H]. 1In additicn to the vectors €, j, and v, the figure
shows the unit vector m, the principal normal to the curve whose unit tangent is
2, and the unit vector n, the binormal. Similar to ¢, j, v, the vectors ¢, m,
n also form a righ%—handed orthonormal triad. Except for £, pointing into the

plane of the paper, the remaining four vectors lie in the plane of the paper.

surface

Fig. 1

The first part of the development follows essentially §7-1 through §7-4 in
{H]. The preliminary formulas needed for this part are listed below. In the

surface context, we have
- .5 s

Qaﬁ ajaﬂﬁ + 0 JaJB . (C.1)

which is the first equation in (4.11) of (H]. This readily yields
8 _ a B _

gt =93, . 2pd o . (C.2a.b)
where (C.2a) is (4.07) in {H]. 1In the space context, (C.2a) corresponds to

¢ 2 = xm_ (C.3)

which is the first of the three equations in (4.06) of [H]. known as the Frenet
equations. The quantities x and o are respectively the principal and the

geodesic curvatures of the curve; in analogy to other quantities associated with
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J and distinguished by an asterisk, o* represents the geodesic curvature of the

curve's orthogonal trajectory (in the direction j).

We will also need

r « _ r _.r T,
9Xx /3u = X, L Qa + Jo - (C.4)

which corresponds to (6.02) and (6.09) in {H]), except that here the surface
coordinates are symbolized by {ua) instead of {xa}. Finally, (6.16) in [H]
aives

r r .
Xaﬁ = baBU ; (C.5)

the symmetric surface tensor baB is known as the second fundamental form of the
surface. We note that all of the tensor equations (C.1-5) apply at the point P.
Thus, all of the tensors in these equations (including the mixed tensors x: apAd

xr as well as the scalar invariants o, o*, and x) belong to P.

aB
We begin the first part of the development with (6.07) in [H}:

ef = xTe®
«
whose surface covariant derivative with respect to uB is
rs _.r .a r.a
stB = xasﬂ + xaRB ;
2; and Qg could also be written as Qrs and Qaﬁ, respectively. Upon using (C.5).

(C.4), and (C.1) with the index a raised, it follows that

e xS = v (b
S Q,

8 B B 8
which is (7.01) in [H]. The contraction with QB (where, on the left-hand side,

Qa) + Jr(aﬁ + a¥%j

) .

Hotine's formula 6.07 is again used), the lowering of the space index r, and the

utilization of (C.3) result in

s
g ¢ = zmr = Vr(ba

a .
s L e7) + OJr , (C.6)

8

corresponding closeiy to (7.02) in {H]. rnis equation confirms that the vector

m lies in the plane containing j and v.
From Fig.1 it follows that

m“ur = cosé@ |, mrjr = siné . (C.7a.b)




Furthermore, we define an invariant k as
k = xcos#8 . (C.8)

Finally, we recall from (3.19,20) in [H] that if p and q are two orthonormal

vectors, it holds true that

r r r

PrgP = 0. P.gd = -q..P . (C.9a.b)

which applies also in two dimensions. If we now contract (C.6) with v' and use
(C.7a,8,9b), we obtain

k = ycos8 = ¢ u7e5 = —p o508 - b _¢%f | (C.10)
rs rs af

which corresponds to (7.03) in [H]. Further, if we contract (C.6) with Jr and
use (C.7b,9b) as well as (C.2b}, we find

o= xsin® = ¢ 3¢5 = -5 o¥eS = ¢ %P

g g% P
rs rs af

—JaB , {C.11)
which corresponds to (7.04) and the subsequent equation in {H]. Due to (C.9a),

the contraction of (C.6) with ' merely yields the identity 0=0.

Equation (C.10) shows that k is the same for any surface curve in the

8

direction £, since ba 2% (a point function) and the

8 8

direction £, not on any particular curve in this direction. 1In §7-03 of [H].

depends only on ba
this quantity is identified as the normal curvature of the surface in the
direction ¢. In reference to (C.11), if

g =0, (C.12a)
{.e., if the curve is a geodesic. in general (x#0) it follows that

8 =0, (C.12b)
and, according to Pig. 1 and equaticn (C.10), also that

ms=s v, k = x . (C.12c,d)

In this case, the principal normal coincides with the surface normal, and the
normal curvature of the surface in ¢ equals the space curvature in ¢, as is
explained in §7-04 of [H]). In general, the first equalities in (C.10,11) relate

the curvatures x, k. and o by

x =k + o ; (C.13)
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this equation could be used to define the normal curvature through

The second part of the present development parallels the first part., except
that the direction considered is j instead of £. Accordingly, the pertinent
quantities are attributed an asterisk to distinguish them from their
counterparts dealt with previously. This applies, specifically, to the
curvatures o, x, and k (along %) being replaced by o*, x*., and k* (along j),
respectively., as well as to the vectors m and n being replaced by m* and n*. and
to the angle 6 being replaced by 6*. The vector ¢ is replaced by j while the
vector j is replaced by -2, since the positive rotation from j is toward -¢.
This situation is depicted in Fig. 2, whose construction 1is conceptually similar
to Fig. 1.

surface

Fig. 2

Instead of (C.1-2b) as preliminary formulas., we now use the second equation

in (4.11) of [H], and write

— - * : .
JaB oQaEB fod QaJB : (C.14)

Jaﬂjﬁ = -o*ﬂa . j o8 i = -o* . (C.15a.b)

In analogy to (C.3), we have
s
J. .3 = 1'm;, (C.16)

rs

&4




while (C.4,5) need no modification. Similarly to the first part, we begin the
development with

ro_ T
J o’

which, when differentiated covariantly with respect to uB. yields

L

J J

r.s _ ST &
s B aBJ a
Upon using (C.5), (C.4). and (C.14) with the index a raised, it follows that

j;xz - vr(baﬁja) - QF(UQB +0%g)
The contraction with jB. the lowering of the space index r, and the utilization
of (C.16) result in
j S s xtm* = u (b 3%5P) - exe (C.17)
rs r r af r

This equation parallels (C.6), but is without an equivalent in [H].
With the aid of Fig. 2, the expressions paralleling (C.7a.b) are seen to be
r r .
m;u = cos@¥* , m;ﬂ = -sin@* ; (C.18a.,b)
the expression paralleling (C.8) is
k* = x*cos@* . (C.19)

To obtain relations paralleling (C.10,11), we contract (C.17) in turn with of
and -Qr. and use (C.18a-19) as well as (C.9b) and {(C.15b):

1*cos8* = j ur.s -~y J.r‘js b a.B

« )
k rs” J rs aBJ 3 (C.20)

i

1]

o* x*sing*

r.s r.s naJB

= _Jaﬁ

the contraction of (C.17}) with jr would yield the identity 0=0. Here k* again

3% 5P

I

1
(I
f =]

L&)

1}
=
.
L

1

Qaﬁ (C.21)

depicts a property of the surface, this time in the direction j, and, in analogy
to (C.12a-d). the geodesic in this direction is characterized by
a* = 0 , 6% = 0 , (C.22a,b)

m* = v, k* = x* . (C.22c.d)

In paralleling (C.13), we now have x*2=k*2+a*2




In the third part of the development, we return to the curve in the
direction £ and recall the third equation from (4.06) in [H]:

n 5= -tm . (C.23)
rs r

where 7 is the torsion of the curve. From Fig. 1 we deduce that
n_ = v sinf@ - j cosé ,
r r r

which, when differentiated covariantly with respect to the arc element ds of the

curve (interpreted in a usual manner as a member of a family of curves), yields

n_2%=-tm_=wv_¢sing - J ¢%cos @
rs r rs rs
+ (urcosﬁ + jrsinﬁ)dB/ds . (C.24)

where (C.23) has been incorporated. Upon contracting this equation with jr. and

considering (C.7b) and (C.9a,b), it follows that
(t + d8/ds)sin8 = -v__ 3  ¢%sing = j_ v e%sineg .
rs rs

With the exception of sin@ being replaced by cos8, this relation is obtained
upon contracting (C.24) with v’ and considering also (C.7a). Thus, for any 4,

we have

T + d6/ds = jrsv ¢ = -v__jor (C.25)

which is (7.05) in [H]. Since for a geodesic it holds true that 8=0 and hence
d6/ds=0, the right-hand side of (C.25) gives the torsion of a geodesic.

As a matter of interest, (C.25) applied to a geodesic can be derived

separately as follows. PFirst, (C.24) is contracted with mr:

n m§g& = -7 =y mrﬂsslne -] mrnscosa + (c0328 + sin20)d8/ds .
rs rs rs

or
T + d8/ds = j m' 2% cos6 - v mrQSsinB
rs rs

For a geodesic, (C.12c) implies that

and (C.12b) implies that

g =0, dé/ds = 0
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as has already been stated below (C.25). We thus have

confirming (C.25) for a geodesic.
To derive another form of r+df8/ds, we rewrite (6.19) of [H]:

r.s
xaxB = baB .

14
rs

8

which we contract in turn with Jaﬁ and Qajﬁ. In using the formula of the

type (6.07) in [H], we obtain

v 5% = -y dF5% - baﬁjanﬁ - baBQaJB . (C.26)

where the last equality justifies the others; this equality stems from the
a B
£ J

symmetry of ba

The quantity ba . which depends on ti.e point function

g 8
b and the direction £ but not on any particular curve in this direction. is

aB
denoted t in §7-5 of [H]., and identified as the geodesic torsion of the surface

in the direction €. In collecting the expressions in (C.25,26), which all
determine the same quantity t+d@/ds, and apply (C.9b) in one additional

instance, we write

r._s r.s r,s
UrsJ g = Qrsv j = vrsQ J

t =t + d8/ds

[{}
(5
<
o

1]

LPL (C.27)

.
1

baﬁﬂ = baBj
This relation corresponds to (7.08) in [H].

The fourth part of the development parallels the third part, except that
the direction considered is j instead of £. We have seen a similar distinction
between the second and the first parts. Here again, the explicit development

presented below is not contained in [H]. 1In analogy to (C.23). we now have
n* j% = —cem* (C.28)
rs r '

while from Fig. 2 we deduce that

n* = v sinf* + 4 cosf*
r r r
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whose covariant differentiation with respect to the arc element ds* (along j)

vields

3 s s
n* j° = -t*m* = vy j sin8* + ¢ j cos@*
rs r rs rs

+ (urcose* - Erslna*)de*/ds* . (C.29)

In contracting (C.29) in turn with of and ur. and considering (C.18a.,b)
and (C.9a,b), we obtain

* * * - _ r.s _ r.s
t* + d6*/ds Qrsu j VPSQ i, (C.30)

multiplied in the former case by sin#¥*, and in the latter case by cos§8*.
Accordingly, this relation holds true for any 8*. (Similarly to the discussion
below equation C.25, upon contracting C.29 with m*r it can be showed separately
that C.30 is valid for a geodesic.) From the first equality in (C.30), we
observe that t*+d8*/ds* is the negative of t+d8/ds in (C.27). In analogy to
its counterpart, t*¥+d6*/ds* depends on the direction j but not on any particular
curve in that direction; it is denoted t* and identified as the geodesic torsion

of the surface In the direction j. Thus, we have
t*¥ = -t . (C.31)

As stated in §7-6 of [H]), the sum of the geodesic torsions in any two

perpendicular directions is zero.

In the fifth part, we follow essentially §12-17 in (H], but consider the
more general directions f and j instead of A and u. As in [H], the starting
point is provided by the notion of N-surfaces defined by N=constant. Thus, the
gradient vector at a given point is perpendicular to the pertinent N-surface,

and can be written as

N =nv ., (C.32)
r r

where n is the magnitude of Nr {not to be confused with the binormal n dealt
with previously), and v is a unit normal to the N-surface (earlier referred to

simply as surface). The covariant differentiation of (C.32) yields

N = n Vv + nv
rs s r rs

where the tensor Nrs is symmetric in r and s. If we interchange r and s. and

subtract, we obtain (12.018) of (H]. The subsequent contraction with S gives
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S
nv. v =n_- (n v)y |,
rs r s r

which is (12.019) in [H]. However, in our general context, n. is expressed as

- 8 .S S
n, = (nsQ )Qr + (nSJ )jr + (nsu )ur
resulting in

s s .S, .
nursu = (nse )Qr + (nsJ )Jr

Upon the division by n, the last equation becomes

s _ = -
ursu - Tl r + Ter ’ (C33)
where
7, = (n e%)/n = (1/n)an/3s
;2 = (nsjs)/n = (1/n)9dn/ads*

ds and ds* being length elements in the directions ¢ and j, respectively. If we
contract (C.33) in turn with 2" and Jr. and use (C.9b). we can express ;] and

;2 more completely:

(nsﬂs)/n

f
<
©
<

1]

1
©

(C.34a)

-
—
[}

(nsjs)/n 705 = -3 W0 (C.34b)

We remark that if y is the principal curvature in the direction v, and w is the

principal normal, (C.33) can be restated as
TW_ = 712 + sz . (C.35)

Consistent with §12-17 in [H], the principal normal is seen to be an N-surface
vector. In writing (C.35) with the index r raised, and contracting the two

equations, we also have

2

2 -2

v (7,2

Finally, in the sixth part we give the motivation for defining a quantijty

called 53. If we seek, for example, the intrinsic derivatives of £ (the unit
tangent to an N-surface curve) with respect to length elements in the &, j, and

v directions, i.e., if we seek & QS. L js. and ¢ us, we arrive at
rs rs rs
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expressions where all of the needed tensor invariants have already been formed

except for one, denoted 53:
- T o
63 = ersJ v = JrsE v, (C.36)

This can be seen as follows. In considering a general expression of the form
t t, . t
hr = (htﬂ )Er + (htJ )Jr + (htu )ur .

where hr is a covariant vector or the gradient of a scalar. in conjunction with

(C.9a) we have

s s, t s t _
QrsQ = (QtSQ J )jr + (Qtsﬂ v )ur = ajr + kv
s _ st st - g¥i o
¢ 3 =R, 333y (R Jv )y = 0] vty
s _ s .U, . s t _ = _ 3
bs? ° (Qtsu J )Jr vl vy )Vr = E3dp T TV

where, in the first line, we have used (C.11) and (C.10) giving ¢ and k,
respectively, and in the second line we have used (C.21) and (C.27) giving o*
and t, respectively. The third line brings forth the new expression in (C.36),

as well as 7y, from (C.34a).

1

C.2 Transcription for the Triad A, u, v

As has been indicated at the outset, the final step of the present
development consists in transcribing the main outcome of the preceding section
from a general orthonormal triad ¢, j, v to the orthonormal triad A, u, v. The
curvatures to be transcribed have been derived in the order: k in (C.10), o in
(C.11). k* in (C.20), o* in (C.21), t in (C.27). ;1 in (C.34a), ;2 in (C.34b),
and 53 in (C.36). Since t*=-t according to (C.31), no transcription is needed
for t*. The transcribed curvatures will be presented in the order just listed,
where the expressions not containing the orthonormal vectors will be omitted.
The three overbarred quantities will have the overbar removed; of the other
curvatures, tiuse assuciai2d with the direction 2 (replacing ¢) will be
attributed the subscript 1. and those associated with the direction g (replacing
j) will be attributed the subscript 2.
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Below we list the transcribed curvatures in terms of the orthonormal

vectors A, u, and v.

ky = Arsvrls = —ursz‘"xs - baﬁx“aﬁ . (C.37)
o =& w2 = A2 - xaﬁu"‘zﬁ - -uan"‘xB , (C.38)
k2 = HL Y S = —ursurus = baﬁuauﬁ . (C.39)
o, = —urslrus = Arsurus = -uaﬁlauﬁ = Raﬁu uB . (C.40)
t1 - 'ursyrlS - —Vrs#rxs - erurus T rsxr °

B, baﬁ/lauﬁ - baﬁu"‘xe . (C.41)
T, = ursxrus = —lrsurvs . {C.42)
T, = ursurvs = —ursurus . {C.43)
53 = erurus = —urskrus . (C.44)

As has been indicated, there is no need to list tz. Since t2=—t], this

quantity would give rise to no new contractions.
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APPENDIX D

DETAILED DERIVATION OF LEG DERIVATIVES OF CURVATURES

D.1 Lepg Derivatives of Curvatures Developed Using Space Vectors

In this section, equations (31a-i) are derived using the orthonormal
vectors A, 4, and v in the space context. The initial equations serving in this
task are (13a)-(17). The covariant R-tensor and its properties play a crucial
role here. 1In accordance with §5-4 and §5-5 in {Hotine, 1969]., abbreviated as
[H]). this tensor is skew-symmetric in the first two and the last two (space)

indices, and symmetric with respect to the two pairs of indices:

RUFSt ) -Rrust ' Rurst ) _Rurts ) Rurst B Rstur ) (D.1a.b.c)

From (D.1a-c), or directly from (5.08) in [H]), it follows that

Rurst - Rtsru ) (D-14d)

The notation used in Section 4.1 for the leg derivatives, such as

t _
(kl)tu = k1/2 . (D.2)
etc., and for contractions of the covariant R-tensor, such as
R %8 = rR(131.2) (D.3)

urst

etc., will continue to be used throughout; there is no need to list the longer

expressions on the left-hand sides of (D.2.3). Accordingly, (D.la-d) yield

R(1,3,1,2)

-R(3,1,1,2) , R{1.,3.1,2)

-R(1,3,2.1) , (D.4a.,b)

R(1.,3.,1.,2)

R(1.2.1,3) . R(1.3.1,2)

il

R(2.1.3.1) , (D.4c.d)

indicating that the numbers inside the parentheses can be manipulated similar to

the indices of the covariant R-tensor.

Further, due to the fact that

u u

R.rstxu - Rurst/z
we can write

u r,s t _
R.rstluv A ¢ = R(1,3,1,2)
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However, since according to (5.02) in {H] one has

u
lrst Xrts N R.rstlu :

it follows that

(A - zrts)u“zsut = R(1.3.1.2) . (D.5)

rst

i.e., the numbers inside the parentheses attributed to R reflect the ranking
of the orthonormal vectors in the complete expression on the left-hand side,
provided the contracting indices are properly ordered. Finally, the results

in the present development are formalized with the aid of (18a)-(19c).

We are now in a position to derive (31a-i) in a direct and expeditious

manner. From the first alternatives in (14a) and (15), we form

_ r,s t r.s t - r.s t
k1/2 = AgV A B T A v A ApsV At

_ r s,t r s,t r s,t
t1/1 - Arstv hoA ervtu A+ xrsv utZ '

where expressions of the type (D.Z2) have been utilized. (Such manipulations

will no longer be referenced.) Due to the first formula in (18a) and the second
formula in (18c), symbolized as (18a)-1 and (18c)-2, the second term giving k
is —kzolz while due to (19b) and (18a)-2, the third term is tlaa-tlrl.
(18a)-2 and (18c)-1, the second term giving t 1s —tlaz; while due to (19b)

1/1
and (18b)-1, the third term is -kla]—t Next, the (dummy) indices s and t

1/2
Due to

T,
171
in the first term giving tl/l are interchanged. and the entire equation is
subtracted from that giving kl/z’ Upon considering (D.5), the first term of the

resulting equation is R{1,3,1,2);: the other terms are obtained by subtracting

-t.o,-k, o -t

192K, 94 171 from —kza +t o, -t

1749 171 as indicated above. Accordingly, we have

k -t = R(1,3,1.2) + (kl—kz)a1 + 2t10

1/2 1/1 (D.6)

2 .
which is (31a).

Similarly, from the first alternatives in (14a) and (16a), we form

r.s t r.s t r.s t
k1/3 = ertu A v o+ erytz v+ lrsu Xtu .
o rs.t r s.t r s,t
71/1 = Arstu v A Arsutu A Arsu utl .
Due to (18a)-1 and (18c)-3, the second term giving kl/3 is 7,04; while due to
(19b) and (18a)-3, the third term is t153+rf. Due to (18a)-3 and (18c)-1, the
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second term giving 71/1 is t_e€_: while due to (19b) and (18c)-1., the third term

173
is kf+t§. Next, the indices s and t in the first term giving 71/1 are

interchanged, and the entire equation is added to that giving kl/3' Upon
considering the type of (D.5), the first term of the resulting equation is
R(1.3.1.3); the other terms are obtained by adding tle +k2+ 2 2

gtkprty tor,0,tt 80y

as indicated above. Accordingly., we have

2

2 2
= R(1,3,1,3) + k1 + t1 + 7y + 2tle (D.7)

Kizst Tin 3 " 729 ¢

which is (31b).

From the first alternatives in (15) and (16a), we form

[ = A T svt + A Sut v At sut

“1/3 rst” # rs 't rs?’ H¢¥ -
_ r s t r st rst

Ty/2 ~ Arst? ¥ H ApsVe? # Aes? VeH

Due to (18a)-2 and (18c)-3, the second term giving t is 7202; while due to

(19b) and (18b)-3, the third term is -k163+7]rz. D:éqio (18a)-3 and (18c)-2,.
the second term giving 71/2 is k263: while due to (19b) and (18c)-2. the third
2t1=2Ht1, where the statement below equation (30) has been taken
into account. Next, the indices s and t in the first term giving Ty/2 are

term is klt]+k

interchanged, and the entire equation is added to that giving t Upon

1/3°
considering the type of (D.5), the first term of the resulting equation is
R(1.3.2.3)=R(2,3,1,3), where the type of (D.4c) has been included; the other
terms are obtained by adding k253+2Ht1 to 7202_k163+7172 as indicated above.
Accordingly, we have

t = R(2.3.1.3) + 2Ht1 + 7175 - (k,-k,)e

17K (D.8)

173 Y T1/2 3 ¥ T2% -

which is (31c).

From the third alternative in (15) and the first alternative in (14b). we

form
_ r.st r,s t r,s t
Y172 = HrstV AR N N N
~ r s.t r s,t r s,t
k2/] T HpgeV BA T BV A HrsV Heh
Due to (18b)-1 and (18c)-2. the second term giving t]/2 is tla]; while due to
(19c) and (18a)-2, the third term is kzaz—tlrz. Due to (18b)-2 and (18c)-1,
the second term giving k2/1 is k]az: while due to (19c) and (18b)-1, the third
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term is -tlol—t,rz. Next, the indices s and t in the first term giving k2/]
are interchanged, and the entire equation is subtracted from that giving t1/2'

Upon considering the type of (D.5), the first term of the resulting equation is

R(2.3,1.2): the other terms are obtained by subtracting klo -t.o,-t_y. from

2 11 172
t101+k202—t172 as indicated above. Accordingly, we have

t1/2 - k2/l = R(2.3.1,2) - (kl—kz)o + 2t10 (D.9)

2 1

which is (31d).

From the third alternative in (15) and the first alternative in (16b), we

form
_ r.s t r.s t r.s t
tl/3 = urstu A v o+ #rsvtl v+ ”rsv Ztu .
o r s.t rs.t rs.t
Ta/1 = THpstV ¥ A HpsVe? A HpsV Ved

Due to (18b)-1 and (18c)-3, the second term giving t1/3 is —Tla]; while due to

(12c) and (18a)-3, the third term is kze3+7172. Due to (18b)-3 and (18c)-1,

the second term giving 72/1 is —klea: while due to (19c) and (18c)-1, the third
term is k1t1+k2t1=2Ht1. where the statement below equation (30) has been taken
into account. Next, the indices s and t in the first term giving 72/1 are

interchanged, and the entire equation is added to that giving t Upon

1/3°
considering the type of (D.5), the first term of the resulting equation is

R(2.3,1.3); the other terms are obtained by adding —k153+2Ht1 to —7101+k253

+7172 as indicated above. Accordingly. we have

t1/3 * T T R(2.3.1.3) + 2Ht1 *TyT, (kl-kz)e3 - 7,9 (D.10)

which is (31e).

From the first alternatives in (14b) and (i16b), we form

" _ ur sut . ur Svt . Ur sut

2/3 #rst H urs tu Hrs “t !
- - urus t Vrus t yrus t

72/2 urst H HrsVe¥ H Hrs t” ’

Due to (18b)-2 and (18c)-3, the second term giving k2/3 is 740, while due to

(19c) and (18b)-3, the third term is —t153+7:. Due to (18b)-3 and (18c)-2,
the second term giving 72/2 is -t163: while due to (19c) and (18c)-2, the third
term is tf+k2. Next, the indices s and t In the first term giving 72/2 are

interchanged, and the entire equation ls added to that giving k2/3. Upon
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considering the type of (D.5), the first term of the resulting equation Is

. 2 2
R(2,3.2.3); the other terms are obtained by adding ~t163+t1+k2 to 7102-t1€3

+T§ as indicated above. Accordingly, we have
2 2

= R(2,3.2,3) + k_, + t_ + 72 - 2t e, - 7.0, . (D.11)

k 2 1 2 13 1°2 -

273 " T2/2
which is (31f).

From the first alternatives in (13a,b), we form

_ r,s t r.s t r.s t
%12 Apgth A K ApgHehA B r Ak Ak
r s,t r s.t r s.t
9271 T Arsth H AT A gHH Ay A kAo

Due to (18a)-1 and (18b)-2, the second term giving o is klkz; while due to

1/2
(19a) and (18a)-2, the third term is oo+t e,. Due to (18a)-2 and (18b)-1. the
second term giving 02/1 is t?: while due to (19a) and (18b)-1, the third term
is ~02+t & Next, the indices s and t in the first term giving o are

1 173 2/1

interchanged, and the entire equation is subtracted from that giving ¢ Upon

1/2°
considering the type of (D.5), the first term of the resulting equation is
R(1,2.1,2); the other terms are obtained by subtracting ti—af+tle3 from klk2

+a§+t153 as indicated above. Accordingly. we have

2 2 2
01/2 - 02/1 = R(1,2,1,2) + klk2 - tl + oy o, (D.12)

which is (31g).

From the first alternatives in (13a) and (17). we form

t r,s t r.s t
+ erutx v+ er” Av o,

91/3

-«

r,s
zrst“ Ay

t

r s,t r 2

r s,t
€31 © xrstu VAT A GV AT+ A BV

ct W

Due to (18a)-1 and (18b)-3, the second term giving ¢

1/3
(19a) and (18a)-3, the third term is 5302—7153. Due to (18a)-3 and (i8b)-1.

the second term giving 63/1 is —tl % while due to (19a) and (18c)-1. the third

term is -klol-t]az. Next, the indices s and t in the first term giving &

is —klrz; while due to

3/1
are interchanged, and the entire equation is subtracted from that giving 01/3.

Upon considering the type of (D.5), the first term of the resulting equatlion is
R(1,2.1,3)=R(1,3,1,2). where the type of (D.4c} has been included; the other

terms are obtained by subtracting -t rl—klol—t g, from —k172+e as

1 1% 3% T1%3

indicated above. Accordingly, we have
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~ € = R(1.8,1,2) - klr2 + tlrl + ko, +t. o, - r.e,+e€e, 0, . (D.13)

%1/3 191 192 153 7 39,

3/1
which is (31h).

Finally, from the first alternatives in (13b) and (17). we form

o - 2 r Sut . 2 r sut . 2 r syt
2/3 rsth # rs“e# rs ¥ #t

_ r s t r st r st
63/2 - xrstu vt er”tu N er” Utu

Due to (18a)-2 and (18b)-3, the second term giving ¢ while due to

(19a) and (18b)-3, the third term is —530

2/3 18 4Ty
1—7263. Due to (18a)-3 and (18b)-2,

the second term giving ¢ is -kzrl: while due to (19a) and (18c)-2, the third

3/2
term is —tlal—kzaz. Next, the indices s and t in the first term giving 53/2
are interchanged, and the entire equation is subtracted from that giving 02/3.

Upon considering the type of (D.5), the first term of the resulting equation is

R(1,2.2,3)=R(2,3,1,2), where the type of (D.4c) has been included; the other

terms are obtained by subtracting —kzrl—tlol—kza2 from -tlrz-ssal—rzes as
indicated above. Accordingly, we have
- = - - - 1
02/3 63/2 R(2,3,1,2) + k271 t172 + tlol + k2°2 7253 5301 . (D.14)

which is (311).

D.2 Leg Derivatives of Curvatures Developed Using Surface Vectors

We now re-derive equations (3la.d.g) using the surface vectors A and pu,
thus providing verifications for the formulas developed above. In this task, we
make use of the covariant R-tensor in two dimensions. Equations (D.la-d) remain
valid provided the Roman indices are substituted for by the Greek indices

(restricted to the numbers 1,2), such as in

_RBGTé , Raﬁré = (D.15a.b)

Ragré “Rapor

= R&rﬁa (D.15c.d)

Raﬁr6 eraﬁ ' Raﬁrd

As in (5.16) of [H], the covariant R-tensor in a two-dimensional space, i.e.. a

surface, serves in the definition of K. the Gaussian curvature of the surface:

_ aB 16
K= (1/4)e "¢ R0575
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Upon using the first equations of (2.32) in [H]. namely

eaﬁ _ Xauﬁ _ uaxﬁ '
and taking advantage of (D.15a,b,d), the Gaussian curvature becomes

K = R « 87,0

aﬁrax u , (D.16)

which is the outcome obtained by a different route in §5-20 of [H]. When

working in two dimensions, we do not use the convention of the type (D.3).

Equation (8.31) in [H] yields the Gaussian curvature of a surface embedded

in a general space as
2
K=k k, -t  + C, (D.17a)

where, according to (5.25) in {H], we have

ur.,st
= = R . . 7b
C Rurstx g A u R(1,2.1.,2) (D.17b)

Clearly, in the flat space we recover the familiar formula

2
K = k1k2 - t1 . (D.17c)

Upon considering (D.16) and (D.17a,b), it follows that

a By 6 _ 2
RaBrél uw Ay = R(1,2,1,2) + k1k2 tl

which illustrates why the convention (D.3) cannot be used in conjunction with

(D.18)

the Greek indices.
Similar to the three-dimensional case. for the surface one writes according
to (5.22) in {H}:

5 i 5

A - A = R = RGaBTX . (D.19)

afly arf -aﬁrxd

In reference to (D.2), certain leg derivatives can be obtained also in terms of

surface coordinates, as in
k. o= (k) ut = (k) u (D.20)
1/2 17t 17y ’ )
Further, from (6.07) in [H] we have

x'v® o= Wb (D.21)
a
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where v is a surface vector; in the present context it will be either A or p.
Finally, equation (6.22) in [H]. namely

b - b = -R vV X X_X

aBy ayB urst” “a" By (D.22)

will prove useful when contracted three times with a permutation of the surface
vectors A and y. If we contract (D.22) with Xalﬁur. in conjunction with (D.21)

we obtain

(b y2%2847 - _R(3.1.1.2) = R(1.3.1.2) . (D.23a)

a8y " Parp

while if we contract it with ualﬁur. we obtain

(b -

@« BT - _R(-.2 -
apr " Dayg) A H R(>.2.1.2) = R(2.3.1.2) . (D.23b)

The initial equations serving for the derivation of (3la.,d,g) in two
dimensions are (13a')-(15'). The development involves (D.18,19) and (D.23a.b)
above, as well as (13a')-(15') and (18a',b'), where (19a') could be used instead
of (13a',b'). Keeping in mind surface expressions of the type (D.20)., from

(14a') and the first alternative in (15'), we form

- a.B 7 a.B 7 a.B 7
k1/2 baBTX ATul o+ baBXTX u' o+ baﬁl Xru .

_ a B.r « B,r a B.r
t]/l = baBTR u At o+ baBRTu AL+ baBX uTl .

Due to the second formula in (18a'). symbolized by (18a')-2, and to the second
alternative in (15'), the second term giving kl/z is tloa: while due to (18a')-2

and the first alternative in (15'), the third term is again tla Due to

2
1/1 is kza]: while due to (18b')-1

and (14a'), the third term is —klal. Next, the indices 8 and 7y in the first

(18a')-1 and (14b'), the second term giving t

term giving t are interchanged. and the entire equation is subtracted from

1/1
that giving k1/2' Upon considering (D.23a), the first term of the resulting
equation iIs R(1,3,1,2); the other terms are obtained by subtracting kza]-kla1
from Zt]oz as indicated above. Accordingly, we have
k1/2 - tl/l = R(1,3,1,2) + (kl_ka)al + 2tla2 . {D.24)

the same as (D.6), thereby confirming (31a). We note that the identity of (D.6)

and (D.24) emerges in the last step of two different and independent approaches.
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Similarly, from the second alternative in (15') and from (14b'). we form

t1/2 = baBTuaxaur + baﬁu XB T+ Bu Ri 7 .

K,/ = baBTuauﬁ/IT . b Pl LA st ‘317 :
Due to (18b')-2 and (14a'), the second term giving t1/2 is klo2 while due to
(18a')-2 and (14b'), the third term {s k 02 Due to (18b')-1 and the first
alternative in (15'), the second term giving kz/1 is tlo1 while due to (18b')-
1 and the second alternative in (15'), the third term is again —tlal. Next, the

indices 8 and 7y in the first term giving k are interchanged, and the entire

2/1

1/2°
first term of the resulting equation is R(2,3,1,2): the other terms are obtained

equation is subtracted from that giving t Upon considering (D.23b)., the

by subtracting —2tlol from -k 02+k202 as indicated above. Accordingly. we have

t1/2 - k2/1 = R(2.3,1.2) - (kl~k2)02 + 2t101 . (D.25)

which {s the same outcome as (D.9). Thus, (31d) is confirmed by different and

independent means.
Finally, from the first alternatives in (13a'.b'), we form

- a,8 1 Br

01/2 = XaBTu ATul o+ R B# X A
- a 8.7 a B,7 , &y

02/1 = 2 pout A+ laBuTu A A B

aBy
Due to (18b')-2 and Raaxa=0 (upon considering Hotine's equation 3.19 in two

dimensions), the second term giving 01/2 is 0: while due to (18a')-2 and the

first alternative in (13b'), the third term is 02. Due to (18b')-1 and

2
Xaﬁla=0, the second term giving 02/1 is 0: while due to (18b')-1 and the first

alternative in (13a'), the third term is —al. Both these third terms can
equivalently be obtained if (19a'} is used instead of (13a',b'). Next, the

indices 8 and 7 in the first term giving o arc interchanged. and the entire

2/1

1/2° Upon considering (D.19) and
(D.18), the first term of the resulting equation is R(1.2.1,2}+klk2—t?; the
other terms are obtained by subtracting —af from ag as indicated above.

equation Is subtracted from that giving o

Accordingly, we have
o -0 = R(1.,2,1.2) + k_ k,_ - t2 + 02 + (D.26)
1/2 2/1 e 172 1 1 ' ’

which is the same outcome as (D.12), confirming (31g) by independent means.

g0
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